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Mathematical Rigor, Proof Gap and
the Validity of Mathematical Inference

Yacin Hamamsi

Centre for Logic and Philosophy of Science
Vrije Universiteit Brussel (Belgium)

Résumé : Mathématiciens et philosophes définissent communément la rigueur
mathématique de la maniére suivante : une preuve mathématique est rigou-
reuse dés lors qu’elle ne présente aucun « trou » dans le raisonnement ma-
thématique qui la compose. Toute approche philosophique de la rigueur ma-
thématique formulée suivant cette conception se doit de définir la notion de
« trou ». Cependant, une telle notion ne peut étre pensée que relativement &
une conception du raisonnement mathématique valide, i.e., de la validité de
Uinférence mathématique. Un « trou » dans une preuve mathématique peut
ainsi étre congu comme un échec dans la production d’une inférence mathé-
matique valide. L’objectif de cet article est d’évaluer deux conceptions de la
validité de I'inférence mathématique par rapport a leur capacité a fournir une
explication plausible des notions intuitives de « trou » présentes dans la pra-
tique mathématique. La premiére conception est issue des standards contempo-
rains de la rigueur mathématique : une inférence mathématique est valide si, et
seulement si, sa conclusion peut étre dérivée formellement a partir de ses pré-
misses. Nous montrerons que cette conception ne peut fournir une explication
plausible des notions intuitives de « trou » dans les preuves mathématiques.
La seconde conception est issue d’une nouvelle approche de la validité de I'in-
férence proposée par Prawitz : une inférence est valide si, et seulement si, elle
consiste en une opération produisant une justification pour sa conclusion a
partir de justifications pour ses prémisses. Nous adapterons tout d’abord cette
conception a l'inférence mathématique et nous montrerons alors qu’elle est en
mesure d’accommoder différentes notions intuitives de « trou » a travers dif-
férents types d’échecs dans la production d’inférences mathématiques valides.
Nous conclurons en soulignant l'intérét de cette conception pour la philoso-
phie de la pratique mathématique, et nous reléverons un certain nombre de
défis confrontant le développement d’une telle approche des notions de rigueur
mathématique, de « trou » et de validité de 'inférence mathématique.

Philosophia Scientice, 18 (1), 2014, 7-26.



8 Yacin Hamami

Abstract: Mathematical rigor is commonly formulated by mathematicians
and philosophers using the notion of proof gap: a mathematical proof is rig-
orous when there is no gap in the mathematical reasoning of the proof. Any
philosophical approach to mathematical rigor along this line requires then an
account of what a proof gap is. However, the notion of proof gap makes sense
only relatively to a given conception of valtd mathematical reasoning, i.e., to a
given conception of the validity of mathematical inference. A proof gap can in
particular be conceived as a failure in drawing a valid mathematical inference.
The aim of this paper is to discuss two possible views of the validity of math-
ematical inference with respect to their capacity to yield a plausible account
of the intuitive notion(s) of proof gap present in mathematical practice. The
first view is the one provided by the contemporary standards of mathematical
rigor: a mathematical inference is valid if and only if its conclusion can be
formally derived from its premises. We will argue that this conception does
not lead to a plausible account of the intuitive notion(s) of proof gap. The
second view is based on a new account of the validity of inference proposed
by Prawitz: an inference is valid if and only if it consists in an operation that
provides a ground for its conclusion given (previously obtained) grounds for its
premises. We will first specify Prawitz’s account to mathematical inference and
we will then argue that the resulting ground-based account is able to capture
various intuitive notions of proof gap as different types of failure in drawing
valid mathematical inferences. We conclude that the ground-based account ap-
pears of particular interest for the philosophy of mathematical practice, and
we finally raise several challenges facing a full development of a ground-based
account of the notions of mathematical rigor, proof gap and the validity of
mathematical inference.

1 Introduction

Mathematical rigor is commonly formulated by mathematicians and philoso-
phers using the notion of proof gap:* a mathematical proof is rigorous when
there is no gap in the mathematical reasoning of the proof.> Any philosophi-
cal approach to mathematical rigor along this line requires then an account of
what a proof gap is. However, the notion of proof gap makes sense only rela-
tively to a given conception of walid mathematical reasoning. A natural way

1. See for instance Kitcher: “central to the idea of rigorous reasoning is that it
should contain no gaps” [Kitcher 1981, 469].

2. We do not claim that this formulation exhausts the notion of mathematical
rigor, nor are we trying to evaluate it in this respect. Our standpoint in this paper is
rather to start from this common formulation of mathematical rigor and to analyze
what is required to determine a philosophical account of it.
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to state the connection is the following: a proof gap occurs in a mathemati-
cal proof whenever there is a failure in valid mathematical reasoning. If one
considers valid mathematical reasoning to consist in chains of valid mathemat-
ical inferences, the connection becomes: a proof gap occurs in a mathematical
proof whenever there is a failure in drawing a wvalid mathematical inference.
In order to characterize the notion of proof gap in this way, one shall then
(i) provide an account of what constitutes a valid mathematical inference and
(ii) spell out how one can fail to draw a valid mathematical inference in the
specified sense.

The aim of this paper is to explore two possible views of the validity
of mathematical inference with respect to their capacity to yield a plausible
account of the intuitive notion(s) of proof gap from mathematical practice. The
first view is the one provided by the contemporary standards of mathematical
rigor based on the notion of formal derivation: a mathematical inference is
valid if and only if its conclusion can be formally derived from its premises. The
second view is based on a new account of the validity of inference developed
by Prawitz [Prawitz 2009, 2012a,b]: a mathematical inference is valid if and
only if it consists in an operation that provides a ground for its conclusion
given (previously obtained) grounds for its premises. To evaluate these two
views, we will proceed as follows: (i) we will state in precise terms the two
conceptions of the validity of mathematical inference they propose, (ii) we will
spell out the notions of proof gap they give rise to by investigating how one
can fail to draw a valid mathematical inference in the specified sense, (iii) we
will evaluate the capacity of the resulting accounts to capture the intuitive
notion(s) of proof gap from mathematical practice.

We will place our investigation within the framework of the philosophy
of mathematical practice ([Mancosu 2008], [van Kerkhove & van Bendegem
2010]). This means that we will not only consider mathematical proofs
and mathematical reasoning from contemporary mathematical practice, but
also from different practices at various times in the history of mathematics.
Consequently, by a mathematical inference, we will mean an inferential or
deductive step of a mathematical proof in mathematical practice (past or
present). Such proof steps are often signaled in mathematical proofs by ex-
pression such as “hence”, “therefore”, “it follows that”, etc. Then, by a wvalid
mathematical inference, we will mean a mathematical inference that is correct
or sound by the standards of mathematical proof in mathematical practice.
Finally, by the intuitive notion(s) of proof gap, we will refer to the notion(s)
of proof gap that is (are) present in mathematical practice. Providing a philo-
sophical account of these three notions appears as a central task for the phi-
losophy of mathematical practice.

The paper is organized as follows. In section 2, we formulate three
derivation-based accounts of the validity of mathematical inference based on
three possible interpretations of the relation between the notions of rigorous
mathematical proof and formal derivation. We then spell out the resulting
derivation-based accounts of proof gap, and we provide arguments for their
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rejections as adequately capturing the intuitive notion(s) of proof gap from
mathematical practice. In section 3, we present Prawitz’s recent account of
the validity of inference based on the notions of operation and ground. In sec-
tion 4, we adapt Prawitz’s account to mathematical inference, resulting in a
ground-based account of the validity of mathematical inference, by specifying
the notions of operation and ground in the context of mathematical proofs
in mathematical practice, where the notion of mathematical practice will be
provided by Kitcher’s framework [Kitcher 1981, 1984]. Sections 5 and 6 are
concerned with evaluating the capacity of the resulting ground-based account
of proof gap to capture the intuitive notion(s) of proof gap from mathematical
practice. Section 5 focuses on intra-prazis gaps—proof gaps that occur within
a given mathematical practice—and shows that the ground-based account can
capture the three kinds of proof gaps constituting the taxonomy proposed in
[Fallis 2003] as particular types of failure that will be identified. Section 6 fo-
cuses on inter-prazis gaps—proof gaps that occur from a cross-perspective on
different mathematical practices—and shows how they can as well be accom-
modated within the ground-based account. Section 7 concludes this paper by
wrapping up the main results of our evaluation of the two views of the validity
of mathematical inference through the accounts of proof gap they give rise to,
and by raising several challenges facing a full development of a ground-based
account of the notions of mathematical rigor, proof gap and the validity of
mathematical inference.

2 Derivation-based accounts of the validity
of mathematical inference

According to [Detlefsen 2009], the contemporary prevailing view of what a
rigorous mathematical proof is can be stated as follows:

Rigorous proof [...] is reasoning all of whose inferences track purely
logical relations between concepts. In the late nineteenth and
early twentieth centuries, syntactical criteria for such relations
were developed and these have become the basis for the currently
prevailing view of formalization. [Detlefsen 2009, 17]

What Detlefsen refers to in this quote by ‘syntactical criteria’ corresponds to
the modern notion of formal derivation from proof theory. The prevailing
view of mathematical rigor leaves then room for different interpretations of
the relation between the notions of rigorous mathematical proof and formal
derivation. In this section, we will consider three possible interpretations: (i) a
mathematical proof is rigorous if it is a formal derivation, (ii) a mathematical
proof is rigorous if it can be turned into a formal derivation, (iii) a mathe-
matical proof is rigorous if it can routinely be turned into a formal derivation.
These three interpretations lead to three different accounts of the validity of



Mathematical Rigor, Proof Gap, Validity of Mathematical Inference 11

mathematical inference, and thereby to three different notions of proof gap.
We will now evaluate them in turn with respect to their capacity to capture
the intuitive notion(s) of proof gap from mathematical practice.

The first interpretation yields the following account of the validity of math-
ematical inference: a mathematical inference is valid if and only if its conclu-
sion has been formally derived from its premises. From this definition, it is
straightforward to state what it means to fail in drawing a mathematical infer-
ence: it simply means to fail in providing a formal derivation of the conclusion
of the inference from its premises. This yields the following notion of proof
gap: a proof gap occurs in a mathematical proof whenever there is a math-
ematical inference in the proof for which no explicit formal derivation of the
conclusion from the premises has been provided. This account of proof gap
is over-generative, in the sense that it recognizes proof gaps in mathematical
proofs that are considered as gapless in mathematical practice. The easiest way
to see this is to notice that most mathematical proofs that are considered in
mathematical practice are not presented under the form of formal derivations.?
In particular, these mathematical proofs contain mathematical inferences for
which no formal derivation of the conclusion from the premises has been pro-
vided. If one adopts the notion of proof gap just stated, one is then forced
to recognize proof gaps in most ordinary mathematical proofs. This notion
is therefore over-generative and does not correspond to an intuitive notion of
proof gap present in mathematical practice.

The second interpretation yields the following account of the validity of
mathematical inference: a mathematical inference is wvalid if and only if its
conclusion can be formally derived from its premises. This leads to the follow-
ing notion of proof gap: a proof gap occurs in a mathematical proof whenever
there is a mathematical inference in the proof for which no formal deriva-
tion of the conclusion from the premises can be provided. This account of
proof gap is under-generative, in the sense that it does not recognize proof
gaps in mathematical proofs when there are ones according to the standards
of mathematical practice. To see this, consider any theorem for which a for-
mal proof has been provided in a modern proof assistant (HOL Light, Coq,
Isabelle, etc.), for instance the prime number theorem for which a formal
proof has been provided in Isabelle [Avigad, Donnelly et al. 2007]. In this
particular case, the mathematical inference consisting of the prime number
theorem as conclusion, and of the axioms of higher-order logic, along with
an axiom asserting the existence of an infinite set, as premises, is such that
its conclusion can be formally derived from its premises. This mathematical
inference is then valid according to the account just stated. Consequently, the

3. This observation has been used to argue that “rigor and formalization are
independent concerns” [Detlefsen 2009, 17], but also to argue that the prevailing
view of mathematical rigor yields an implausible account of mathematical knowledge
[Antonutti Marfori 2010]. This observation is also at the basis of recent discussions
on the relation between formal and informal proofs (e.g., see [Azzouni 2004], [Leitgeb
2009], [Rav 1999]).
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mathematical proof consisting of this particular mathematical inference alone
should be considered as gapless, which is obviously at odds with mathemati-
cal practice. We shall then conclude that this notion is under-generative and
therefore does not correspond to an intuitive notion of proof gap present in
mathematical practice.

The third interpretation yields the following account of the validity of
mathematical inference: a mathematical inference is valid if and only if its
conclusion can routinely be formally derived from its premises. This leads to
the following notion of proof gap: a proof gap occurs in a mathematical proof
whenever there is a mathematical inference in the proof for which no formal
derivation of the conclusion from the premises can be routinely provided. This
interpretation is probably the most faithful to the defenders of the prevailing
view of mathematical rigor who argue that, even though rigorous mathemati-
cal proofs are not usually presented as formal derivations, they can routinely
be turned into formal derivations.? The main issue with this account is to
provide a precise meaning of what it means for a mathematical inference to be
routinely formalizable, i.e., to be turned routinely into a formal derivation of
the conclusion from the premises. One way to address this issue is to look at
the field of formal verification, where the main goal is to provide actual formal
derivations of mathematical theorems that can be checked in a purely mechan-
ical way by a proof assistant. What the research activity in this field seems to
reveal is that it is almost never a routine affair to provide a formal derivation
from an existing ordinary mathematical proof.® In particular, there does not
seem to be any direct meaningful sense that can be attributed to the idea
of a routine translation of a mathematical inference into a formal derivation.
Consequently, the notion of proof gap provided by the third interpretation
should not be rejected as inadequate, but rather as underdetermined.

The three derivation-based accounts of the validity of mathematical infer-
ence proposed in this section do not yield an account of proof gap that would
capture adequately the intuitive notion(s) of proof gap from mathematical
practice. Yet, there is still a more general reason to doubt any derivation-
based account of the validity of mathematical inference. The reason is that,
from the perspective of the philosophy of mathematical practice, a philosophi-
cal account of the validity of mathematical inference and of the notion of proof
gap should not only be adapted for contemporary mathematical practice, but
also for other mathematical practices from the history of mathematics. In par-
ticular, such an account should be able to accommodate changes in standards

4. This view is expressed for instance by Mac Lane: “In practice, a proof is a
sketch, in sufficient detail to make possible a routine translation of this sketch into a
formal proof” [Mac Lane 1986, 377].

5. This point has been acknowledged by Robinson, one of the main figures in
automated theorem proving, who said of the activity of formalization that: “[I|n
most cases it requires considerable ingenuity, and has the feel of a fresh and separate
mathematical problem in itself. In some cases [...] formalization is so elusive as to
seem to be impossible” [Robinson 1997, 54].
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of mathematical rigor over different mathematical practices, as it occurred
many times in the history of mathematics.® To this purpose, any derivation-
based account would appear far too 7igid, in the sense that it would provide
an absolute or fized point of reference for determining what constitutes a valid
mathematical inference and a proof gap, and therefore shall fail to account for
different standards.” The second view of the validity of mathematical infer-
ence that we will discuss in the next sections promises to offer more flexibility
in this respect.

3 Prawitz on the validity of deductive
inference

In a series of papers [Prawitz 2009, 2012a,b|, Prawitz has undertaken the task
to develop a new conceptualization of the notion of valid deductive inference.®
The main motivation for this project comes from the requirement that, ac-
cording to Prawitz, a philosophical account of the validity of inference should
be able to explain how one can acquire justifications or grounds by drawing
valid inferences. More precisely, such an account should lead as a concep-
tual truth that by drawing a valid inference, one can acquire a ground for
the conclusion given grounds for the premises that one is already in posses-
sion of. According to Prawitz, neither the notion of logical consequence from
model theory nor the notion of formal derivation from proof theory have been
able to address this requirement [Prawitz 2012a, 888]. Prawitz’s solution is to
build the grounding requirement directly into the conception of the validity
of inference. More specifically, Prawitz proposes an account of the validity of
inference where inferences are conceived as operations on grounds:

To get a fresh approach to the concept of valid inference we should
reconsider the concept of inference. As already noted, a typical
way of announcing an inference is to make an assertion and state
at the same time a ground for the assertion, saying for instance
“B, because A” or “A, hence B”. [..]

Although the conclusion and the premises may be all that we make
explicit, there is also some kind of operation involved thanks to
which we see that the conclusion is true given that the premises
are. Sometimes we vaguely refer to such an operation [...], but es-
sentially it is left implicit. My suggestion is that in analysing the
validity of inferences, we should make these operations explicit,

6. For some historical examples of changes in mathematical rigor, see [Kitcher
1981], [Pierpont 1928].

7. We will come back to this point at the end of section 6.

8. In this section, when we will use the term inference, we will always refer to
deductive inference.
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and regard an inference as an act by which we acquire a justifi-
cation or ground for the conclusion by somehow operating on the
already available grounds for the premises. [Prawitz 2012b, 18]

The validity of inference is then defined as follows:

An individual inference is valid if and only if the given grounds
for the premises are grounds for them and the result of applying
the given operation to these grounds is in fact a ground for the
conclusion. [Prawitz 2012b, 19]

There are thus two central notions to Prawitz’s account of the validity of
inference: operation and ground. We shall now see how they are defined,
starting with the notion of ground.

The term ground is used by Prawitz as a synonym for justification: to have
a ground for a statement A means to be justified in holding A true [Prawitz
2012a, 890]. The main issue is then to determine how the notions of ground
and statement are related, i.e., to specify what constitutes a ground for a
statement. Prawitz’s solution is to appeal to a specific theory of meaning:

The line that I shall take is [...] roughly that the meaning of a
sentence is determined by what counts as a ground for the judge-
ment expressed by the sentence. Or expressed less linguistically:
it is constitutive for a proposition what can serve as a ground for
judging the proposition to be true. From this point of view I shall
specify for each compound form of proposition expressible in first
order languages what constitutes a ground for an affirmation of a
proposition of that form. [Prawitz 2009, 191-192]

For instance, in the case of conjunction, Prawitz proposes the following spec-
ification: « is a ground for the conjunction p A ¢ if and only if & = AG(8,7)
for some 3 and 7 such that § is a ground for p and ~ is a ground for g. Such
specifications rely on grounding operations, such as the conjunction grounding
operation NG, which specify how grounds for a certain type of statement shall
be formed. These grounding operations are primitive in Prawitz’s account. In
the case of the statements expressible in first-order logic, the grounding op-
erations closely follow the introduction rules of natural deduction. Notice,
however, that this ground-based account of meaning is not restricted for
Prawitz to the language of first-order logic, even though explicit descriptions of
grounding operations are only provided for first-order statements. Notice also
that, according to this theory of meaning, if an agent understands the mean-
ing of a statement, she then has the capacity to recognize what constitutes
a ground for it.

The second key notion in Prawitz’s account of the validity of inference is the
one of operation on grounds. Prawitz does not provide a general definition of
what exactly these operations are, except that they have grounds as input and
output. However, Prawitz does provide concrete examples of operations for
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the logical inferences corresponding to the inference rules of natural deduction
for first-order logic, as well as for mathematical induction. In particular, all
the grounding operations corresponding to the introduction rules of natural
deduction constitute such operations. For instance, the conjunction grounding
operation AG is an operation that takes as input a ground v for p and a
ground S for ¢, and outputs a ground o = AG(3,~) for the conjunction p A gq.
Regarding mathematical induction, an informal description of the associated
operation has been provided by Prawitz as follows:®

Let us consider the inference form of mathematical induction, in
which it is concluded that a sentence A(n) holds for an arbitrary
natural number n, having established the induction base that A(0)
holds and the induction step that A holds for the successor n’ of
any natural number n given that A holds for n. The ground for
the induction step may be thought of as a chain of operations
that results in a ground for A(n') when applied to a ground for
A(n). The operation that is involved in this inference form may
roughly be described as the operation which, for any given n,
takes the given ground for A(0) and then successively applies the
chain of operations given as ground for the induction step n times.
[Prawitz 2012b, 20]

We can now state what drawing a valid inference consists in for Prawitz: it
means applying the given operation to the grounds of the premises and to verify
that the result is indeed a ground for the conclusion. Since understanding the
meaning of the statements involved in the inference is a necessary precondition
for being able to draw a valid inference [Prawitz 2009, 199], the agent does
have the capacity to recognize what constitutes a ground for the conclusion
and can therefore evaluate whether the result of the operation is indeed a
ground for the conclusion. In the example of conjunction, the inference with
premises p and g and conclusion pAgq is trivially valid since, given grounds 3 for
p and v for ¢, applying the operation AG to p and ¢ results in AG(S, ) which
is a ground for p A ¢ according to the above specification. In the example of
mathematical induction, the inference with premises A(0) and A(n) — A(n+1)
and conclusion VnA(n) is valid since the application of the above operation
for mathematical induction to the grounds for the premises yields a ground
for A(n), and this for any natural number n.

How according to the ground-based account one can fail in drawing a valid
inference? As we shall see in the next sections, there are several possible ways
to fail in drawing a valid inference, which will lead in turn to different kinds
of proof gaps. However, if we want to be able to evaluate the notions of proof
gap resulting from Prawitz’s account of the validity of inference, we first need
to specify it in the particular case of mathematical inference.

9. A formal description of this operation has been proposed by Prawitz in [Prawitz
2012a, 897].
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4 A ground-based account of the validity of
mathematical inference

Prawitz’s conception of the validity of inference is not only meant as a general
account of the validity of deductive inference in formal proof systems such
as natural deduction, but also of the validity of what we might call informal
deductive inference.'® Since mathematical inferences are par ezcellence a type
of deductive inference which provide conclusive grounds for their conclusions,
and that most mathematical inferences in mathematical proofs are informal
deductive inferences, mathematical inference fits perfectly within the scope of
Prawitz’s account. Indeed, Prawitz confirms this application by taking as one
of the key illustrative examples of his account the validity of mathematical
induction, the archetypal example of a mathematical inference.

How can we adapt Prawitz’s account to the specific context of mathemat-
ical inference? As we saw in the previous section, the main task is then to
specify the central notions of this account—i.e., the ones of operation and
ground—in the context of mathematical proofs in mathematical practice. To
this end, it would appear particularly useful to start with a more precise
conception of what a mathematical practice is. For this purpose, the most
natural choice is to adopt the framework developed by Kitcher in [Kitcher
1981, 1984]. In this framework, a mathematical practice is described as a tuple
(L,M,Q, R,S) where: L is the language of the practice, M the set of meta-
mathematical views, @) the set of accepted questions, R the set of accepted
reasonings, and S the set of accepted statements. The two components di-
rectly relevant to the issue of the validity of mathematical inference are the
set of accepted reasonings R and the set of metamathematical views M. We
shall now see how Kitcher defines these two components, and how they should
be adapted to integrate the notions of operation and ground within the notion
of mathematical practice.

The set of accepted reasonings R is defined by Kitcher as: “the sequences
of statements mathematicians advance in support of the statements they as-
sert” [Kitcher 1984, 180]. As we saw in the first quote of the previous section,
Prawitz does not identify an inference only by its premises and conclusion, but
also by some operation that should be made explicit. Consequently, we shall
consider the set of accepted reasonings R as constituted of a set of mathemat-
ical inferences, where an inference is identified not only by its premises and
conclusion, but also by the operation involved. For instance, inferences cor-
responding to mathematical induction should not only be identified by their
premises A(0) and A(n) — A(n+ 1) and conclusions VnA(n), but also by the
operation described in the previous section. Mathematical induction is here

10. As also noted by Pagin: “A main point of Prawitz’s discussion [...] is that
it does not solely apply to formal systems of deduction, but to informal deductive
reasoning as well” [Pagin 2012, 875].
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a perfect example of mathematical inferences members of the set of accepted
reasonings in the mathematical practice of contemporary number theory. For
other examples we can mention: the diagrammatic inferences in the mathemat-
ical practice of elementary Euclidean geometry in Euclid’s Elements [Euclid
anc.], the computer-assisted inferences in the mathematical practice of graph
theory, or the use of numerical methods—also known as ezperiments—in var-
ious mathematical practices such as number theory or analysis. Notice that
all these examples of mathematical inferences members of the set of accepted
reasonings do not necessarily yield valid mathematical inferences. This is an
interesting and important aspect of Kitcher’s framework, namely that: “the
set of accepted reasonings will outrun the set of accepted proofs” [Kitcher
1984, 181]. As examples of types of accepted reasoning that do not constitute
proofs, Kitcher mentions reasonings that might be used to warrant beliefs,
such as inductive generalizations in number theory, or reasonings that appear
unrigorous, such as various methods of reasoning with infinitesimals in the
early development of the calculus. According to Kitcher, whether an accepted
reasoning in a mathematical practice constitutes a proof and, in our termi-
nology, whether a mathematical inference is valid, is determined by the set of
metamathematical views.

The set of metamathematical views M is defined by Kitcher as containing
at least the following components:

(i) standards for proof; (ii) the scope of mathematics; (iii) the
order of mathematical disciplines; (iv) the relative value of par-
ticular types of inquiry. [Kitcher 1984, 189]

For our purposes, the only relevant component will be the standards of proof.
According to Kitcher, these standards can be specified “by describing the kinds
of inference which are held to be legitimate, or by indicating paradigms of the
type of reasoning which is preferred” [Kitcher 1984, 190]. However, since we
want to reach an account of the validity of mathematical inference, we do not
want to define the correct inferences simply as elements in the set of meta-
mathematical views. Rather, we want the set of metamathematical views to
specify what constitutes a ground for a mathematical statement that can be
formulated within the considered practice. In other words, we shall substi-
tute, in the set of metamathematical views of a given mathematical practice,
standards of proof for standards of justification or ground for mathematical
statements.

Thus, our two main modifications of Kitcher’s notion of mathematical prac-
tice consist in (i) identifying mathematical inferences in the set of accepted
reasonings R not only by their premises and conclusions but also by the op-
erations involved, and (ii) replacing in the set of metamathematical views M
the standards of proof by a specification of what constitutes grounds for the
mathematical statements of the practice. We are now in a position to state
precisely the ground-based account of the validity of mathematical inference:
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a mathematical inference (P, C, Q) is valid within a given mathematical prac-
tice (L, M, @, R, S) if and only if the operation O provides a ground for the
conclusion C given grounds for the premises P, where grounds for C' and P
are specified by the set of metamathematical views M. The validity of math-
ematical inference is thus defined by components R and M together, which is
in direct line with Kitcher’s view:

[T]he criteria [...] for correct inference are set by the background
metamathematical views [...]. Those metamathematical views are
intended to specify the conditions which must be met if a sequence
is to fulfil the distinctive functions of proofs. [Kitcher 1984, 180]

To illustrate the ground-based account of the validity of mathematical
inference, let us consider the different examples of accepted reasonings men-
tioned above. First of all, in the mathematical practice of number theory,
mathematical induction leads to valid mathematical inferences since, as we
have seen in the previous section, it consists in an operation that results in
what is recognized as grounds for statements of the form ¥nA(n) within this
practice. For elementary Euclidean geometry, the validity of diagrammatic
inferences depends on the set of metamathematical views of the considered
practice: in the mathematical practice of Euclid’s Elements, diagrammatic
inferences yield grounds for their conclusions, while in contemporary math-
ematical practice they don’t. According to the ground-based account of the
validity of mathematical inference, the difference lies precisely in the different
specifications of what constitutes a ground for a geometrical statement in the
metamathematical views of the two practices.!! Sometimes, it is a matter of
discussion whether or not a given operation yields a ground for its conclusion,
as witnessed by the debate around the status of the computer-assisted proof of
the four-colour theorem in the mathematical practice of graph theory. In this
particular case, this reflects an indeterminacy with respect to the standards
of ground within the metamathematical views of the practice, and in turn an
indeterminacy with respect to what constitutes a valid mathematical infer-
ence. Finally, some mathematical inferences involve operations that do not
yield (conclusive) grounds for their conclusions, and therefore should not be
considered as valid according to the ground-based account. Numerical meth-
ods or inductive generalizations are examples of such mathematical inferences
in the mathematical practice of number theory.

Following the methodology described in the introduction, we shall now
spell out the notion(s) of proof gap resulting from the ground-based account
of the validity of mathematical inference by investigating how one can fail to
draw a valid mathematical inference in this specified sense. To this end, it
will be useful to distinguish between two families of proof gaps. The reason is
that, as we just saw, the validity of mathematical inference is determined by

11. We shall come back to the example of elementary Euclidean geometry in sec-
tion 6.
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the two components R and M of a mathematical practice. Yet, mathemati-
cians sometimes use the term proof gap to refer to situations in which some
inferences within a given mathematical practice are evaluated with respect to
the metamathematical views of another mathematical practice, i.e., the com-
ponents R and M are taken from different practices. To distinguish between
these two cases, we introduce the following terminology: if a proof gap occurs
when the two components R and M are taken from the same mathematical
practice, we will speak of intra-prazis gap; if a proof gap occurs when the two
components R and M are taken from different mathematical practices, we will
speak of inter-prazis gap. We will now investigate the different possible cases
in which one can fail to draw a valid mathematical inference, focusing in turn
on intra-praxis gaps and inter-praxis gaps.

5 Intra-praxis gaps

An intra-prazis gap occurs in a mathematical proof of a given mathematical
practice whenever there is a failure in drawing a valid mathematical inference,
and where validity is evaluated with respect to the practice’s standards of
ground. The first parameter in this definition is the notion of the validity
of mathematical inference, which is given in this section by the ground-based
account. The second parameter is the notion of failure. The ground-based
account allows for different possible interpretations of what it could mean to
fail in drawing a valid mathematical inference. We now want to evaluate
whether, by fixing different interpretations of the notion of failure, one is able
to capture different intuitive notions of proof gap from mathematical practice.
To this end, we propose in this section the following methodology. It turns
out that a fine-grained taxonomy of different notions of proof gap present in
mathematical practice has been proposed by Don Fallis in [Fallis 2003]. This
taxonomy offers a perfect opportunity to evaluate the ground-based account,
the question being: is it possible, by giving different interpretations of the
notion of failure in the definition of intra-praxis gap, to capture the different
kinds of proof gaps identified in [Fallis 2003]? To answer this question, we will
now comnsider in turn the three kinds of proof gaps constitutive of Don Fallis’
taxonomy—i.e., inferential gaps, enthymematic gaps and untraversed gaps—
and see if they can be accounted for by identifying different interpretations of
the notion of failure.

Inferential gaps are defined by Don Fallis as follows:
A mathematician has left an inferential gap whenever the partic-

ular sequence of propositions that the mathematician has in mind
(as being a proof) is not a proof. [Fallis 2003, 51]

According to Don Fallis, the existence of inferential gaps corresponds to a form
of fallebilism, in the sense that mathematicians might sometimes be mistaken
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in recognizing a sequence of mathematical inferences as a proof. Within the
ground-based account of the validity of mathematical inference, such a failure
can be represented as a mistaken evaluation of the result of the operation
involved in one (or more) mathematical inference of the proof as constituting
a ground for its conclusion. This possibility is indeed considered by Prawitz:

To say that there are deductive inferences that give rise to con-
clusive and even compelling grounds or proofs is of course not to
say that there are infallible roads to knowledge. One can never
rule out that one is mistaken about what one thinks is a ground
or a proof of a sentence. [Prawitz 2012b, 2]

Thus, this precise notion of failure in the evaluation of what constitutes a
ground for a mathematical statement allows us to capture the notion of infer-
ential gap as follows: an inferential gap occurs in a mathematical proof of a
mathematical practice (L, M, @, R, S) whenever there is a mathematical infer-
ence (P,C,O) in the proof such that one has mistakenly evaluated the result
of the operation O, applied to grounds for the premises P, as being a ground
for the conclusion C.

Enthymematic gaps are defined by Don Fallis as follows:

A mathematician has left an enthymematic gap whenever he does
not explicitly state the particular sequence of propositions that he
has in mind (as being a proof). [Fallis 2003, 54]

One of the main reasons for the existence of enthymematic gaps, according to
Don Fallis, is to facilitate communication: by omitting in the communication of
mathematical proofs the steps that anyone can easily reconstruct from common
background knowledge, one can more efficiently communicate the essential
aspects of new proofs. Where is the failure located in an enthymematic gap?
Importantly, the failure is not on the side of the one communicating the proof:
if one leaves an enthymematic gap between some premises and a conclusion,
one is supposed to have successfully obtained a ground for the conclusion
given grounds for the premises, and this by having carried out the operations
involved in the omitted mathematical inferences. Rather, the failure lies in
the communication of the proof: an enthymematic gap occurs precisely when
a mathematical inference (P,C,0O) in the communicated proof is such that
either the operation O does not belong to the set of accepted reasonings, or
O fails to provide a ground for C given grounds for P, and such that the
omitted mathematical inferences can easily be reconstructed from common
background knowledge in such a way that a chain of operations from the set
of accepted reasonings of the practice results in a ground for C given grounds
for P. Thus, enthymematic gaps can be captured by specifying this notion
of failure in communication through a three part condition: an enthymematic
gap occurs in a mathematical proof of a mathematical practice (L, M, Q, R, S)
whenever there is a mathematical inference (P, C, O) in the proof such that (i)
either the operation O does not belong to the set of accepted reasonings R, or
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O fails to provide a ground for C' given grounds for P, (ii) the author of the
proof knows a chain of mathematical inferences in R for which she has verified
that the application of the sequence of operations involved yields a ground
for C given grounds for P and (iii) this chain of mathematical inferences can
easily be reconstructed from the common background knowledge of the agents
involved in the mathematical practice (L, M, Q, R, S).

Untraversed gaps are defined by Don Fallis as follows:

A mathematician has left an untraversed gap whenever he has not
tried to verify directly that each proposition in the sequence of
propositions that he has in mind (as being a proof) follows from
previous propositions in the sequence by a basic mathematical
inference. [Fallis 2003, 56-57]

For untraversed gaps, the failure is easily identified as a failure in performance:
for some mathematical inferences in a mathematical proof, one has not per-
formed the associated operations and verified that they resulted in grounds
for their conclusions given grounds for their premises. Untraversed gaps can
then be captured in the following way: an untraversed gap occurs in a math-
ematical proof of a mathematical practice (L, M, Q, R, S) whenever there is a
mathematical inference (P,C,O) in the proof such that one has not carried
out the operation O on grounds for the premises P, and a fortior: has not
verified that it resulted in a ground for the conclusion C.

Thus, the three kinds of proof gaps from Don Fallis’ taxonomy can be
accounted for as particular kinds of failures in drawing valid mathematical
inferences, where the validity of mathematical inference is determined by the
ground-based account. More specifically, inferential gaps correspond to fail-
ure in evaluation, enthymematic gaps to failure in communication and untra-
versed gaps to failure in performance. We shall now turn our attention to
inter-praxis gaps.

6 Inter-praxis gaps

An inter-prazis gap occurs in a mathematical proof of a given mathematical
practice whenever there is a failure in drawing a valid mathematical infer-
ence, and where validity is evaluated with respect to a different mathematical
practice’s standards of ground.'” Since this definition differs from the one of

12. There are many different ways in which one can understand ‘different’ mathe-
matical practices in the definition of inter-praxis gap. For instance, one may compare
mathematical practices from different domains (number theory, analysis, algebra,
etc.), but also from the same domain but different perspectives such as the ones of
pure and applied mathematics. In this section, we focus in particular on practices
that differ along a temporal dimension—i.e., different mathematical practices from
the same domain, but from different times in the historical development of mathe-
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intra-praxis gap by simply requiring that operations and grounds be taken
from different practices, the three notions of intra-praxis gap from the previ-
ous section can easily be reinterpreted as inter-praxis gap. However, none of
the three resulting notions seem to correspond to an intuitive notion of proof
gap from mathematical practice. Yet there is a specific kind of inter-praxis
gap that is commonly mentioned in mathematical practice. Maybe one of the
most illustrative examples concerns the diagrammatic inferences in Euclidean
geometry, the situation being summarized by Manders as follows:

In Euclidean geometry, a diagram has standing to license infer-
ence, just as do relationships recognized in the text. It is now
commonly held that this is a defect of rigor. But the extraordi-
nary career of Euclidean practice justifies a fuller consideration.
It was a stable and fruitful tool of investigation across diverse cul-
tural contexts for over two thousand years. During that time, it
generally struck thoughtful and knowledgeable people as the most
rigorous of human ways of knowing [...]. [Manders 2008, 81]

In this example, we are in the presence of a family of mathematical inferences—
the diagrammatic inferences—that were considered as valid in the mathemat-
ical practice of Euclid’s Elements [Euclid anc.], but that are not considered as
valid in contemporary mathematical practice. Consequently, it is now thought
that diagrammatic inferences create proof gaps in the mathematical proofs of
Euclid’s Elements, as Manders puts it:

[I]t has been commonplace for at least the last century to castigate
traditional geometry for ‘gaps in arguments’ [...| due to ‘reading
off from the figure’. [Manders 2008, 87]

What does the failure consist in for this particular kind of proof gap? This
question finds a natural answer within the ground-based account of the valid-
ity of mathematical inference, namely that the standards of what constitutes
a ground for a mathematical statement have changed from Euclid to con-
temporary mathematical practice: even though diagrammatic inferences yield
(conclusive) grounds for their conclusion according to the metamathematical
views of the mathematical practice of Euclid’s Elements, they do not accord-
ing to the metamathematical views of contemporary mathematical practice.
In other words, the results of the operations involved in diagrammatic infer-
ences fail to meet the standards of ground from contemporary mathematical
practice, while they do meet the ones of Euclid’s practice. This type of proof
gap seems to occur when a process of rigorization of mathematical practice
is taking place,'®> and can be defined in the present framework as follows:

matics. Providing a taxonomy of the different possible kinds of inter-praxis gaps is
beyond the scope of this paper.

13. See [Kitcher 1981, 1984] for a detailed analysis of rigorization processes in math-
ematical practice.
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a rigorization gap occurs in a mathematical proof of a mathematical prac-
tice (L, M,Q, R, S) whenever there is a mathematical inference (P,C,0O) in
the proof such that the result of the operation O, applied to grounds for the
premises P, does not constitute a ground for the conclusion C' according to the
metamathematical views M, but does constitute a ground for the conclusion
C according to the metamathematical views M’ of a mathematical practice
prior to (L, M,Q, R, S) in the historical development of mathematics.

Two important lessons can be drawn from the existence of rigorization
gaps. Firstly, rigorization gaps differ from the three kinds of proof gaps con-
stitutive of Don Fallis’ taxonomy, since they do not correspond to failure in
evaluation, communication or performance. They appear thereby as a strong
candidate for extending this taxonomy. Secondly, any account of the validity of
mathematical inference and of the notion of proof gap which aims to be faithful
to mathematical practices past and present should be able to account for rig-
orization gaps, as in the example of diagrammatic inferences in Euclidean ge-
ometry. It then seems that any derivation-based account is doomed to fail this
requirement as it provides a fized point of reference—i.e., the notion of formal
derivation—from which to evaluate the validity of mathematical inferences.
Derivation-based accounts cannot in particular explain why diagrammatic in-
ferences are considered as valid in Euclid’s practice but not in contemporary
mathematical practice. As we have just seen, the ground-based account offers
such a flexibility and is able to account for rigorization gaps. The reason being
that the two central notions of operation and ground in Prawitz’s account of
the validity of inference are susceptible of different interpretations, and can in
particular be relativized to specific mathematical practices.

7 Conclusion

We began this paper with the observation that a philosophical account of the
common gap-based formulation of mathematical rigor requires an account of
proof gap, and that an account of proof gap requires in turn an account of the
validity of mathematical inference. The aim of the paper was then to evaluate
two possible views of the validity of mathematical inference with respect to
their capacity to yield an account of proof gap that would adequately cap-
ture the intuitive notion(s) of proof gap from mathematical practice. The first
view was provided by the contemporary standards of mathematical rigor which
evaluate the validity of mathematical inference with respect to the notion of
formal derivation. We saw that there were several possible interpretations
of the relation between the notions of rigorous mathematical proof and for-
mal derivation, leading to different derivation-based accounts of the validity of
mathematical inference. We then argued that none of the resulting derivation-
based accounts of proof gap adequately capture the intuitive notion(s) of proof
gap from mathematical practice. The second view was based on a recent
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ground-based account of the validity of inference proposed by Prawitz. We
first specified Prawitz’s account to mathematical inference by integrating the
notions of operations and grounds within Kitcher’s notion of mathematical
practice. In order to evaluate the resulting ground-based account of proof
gap, we attempted to describe several intuitive notions of proof gap as par-
ticular types of failure in drawing valid mathematical inferences, where the
validity of mathematical inference was specified by the ground-based account.
Our analysis has revealed that several intuitive notions of proof gap can be
accommodated in this way within this framework. More precisely, we saw how
the three kinds of proof gaps comprising Don Fallis’ taxonomy—inferential
gaps, enthymematic gaps and untraversed gaps—can be represented respec-
tively as failure in evaluation, communication and performance. We also saw
that the ground-based account was particularly suitable for representing what
we called rigorization gaps, a particular kind of proof gap that occur from a
(temporal) cross-perspective on different mathematical practices. Finally, we
noticed that rigorization gaps constitute a serious challenge for any derivation-
based account of proof gap. We shall then conclude that the ground-based
account offers a promising framework for representing different intuitive no-
tions of proof gap present in mathematical practice, and therefore should be
of particular interest for the philosophy of mathematical practice.

Yet, a full development of the ground-based account faces several impor-
tant challenges. Some of them have already been raised in critical responses
to Prawitz in [Pagin 2012] and [Murzi 2011]. Pagin identifies two problems
[Pagin 2012, 881]: the first one being that the ground-based account does
not fit the inferential practice of ordinary speakers; the second one that the
ground-based account requires a reflection principle saying that when an agent
is in possession of a ground for a statement she must be aware of it, which
according to Pagin leads to problematic consequences. From the point of view
of moderate inferentialism, Murzi raises two concerns [Murzi 2011, 289]: the
first one regarding the unclear metaphysical nature of grounds; the second one
regarding problematic consequences of conceiving the meaning of a statement
as determined by what counts as a ground for it. This last point is probably
the most pressing challenge facing the development of a ground-based account
of the validity of mathematical inference. More specifically, such an account
requires that if one understands the meaning of the mathematical statements
involved in a given mathematical inference, one has the capacity to recognize
what constitutes a ground for them. We shall then provide a full specifica-
tion of (i) what constitutes a ground for a mathematical statement, and (ii)
how one recognizes whether something counts as a ground for a mathematical
statement. As we saw, Prawitz’s response to this challenge is to adopt a the-
ory of meaning in which the meaning of a statement is determined by what
counts as a ground for holding the statement true, but this solution raises a
number of problems as noticed in [Murzi 2011]. Can a ground-based theory of
meaning for mathematical statements be developed along Prawitz’s line while
avoiding such problems? Is there an alternative way to specify what consti-
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tutes a ground for a mathematical statement? How can we account for one’s
capacity to recognize what counts as a ground for a mathematical statement?
Addressing these questions is the next step towards a full development of a
ground-based account of mathematical rigor, proof gap and the validity of
mathematical inference.
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