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Abstract: Poincaré and Prawitz have both developed an account of how
one can acquire knowledge through reasoning by mathematical induction.
Surprisingly, their two accounts are very close to each other: both consider
that what underlies reasoning by mathematical induction is a certain chain of
inferences by modus ponens ‘moving along’, so to speak, the well-ordered
structure of the natural numbers. Yet, Poincaré’s central point is that such a
chain of inferences is not sufficient to account for the knowledge acquisition
of the universal propositions that constitute the conclusions of inferences by
mathematical induction, as this process would require to draw an infinite
number of inferences. In this paper, we propose to examine Poincaré’s point
– that we will call the closure issue – in the context of Prawitz’s framework
where inferences are represented as operations on grounds. We shall see
that the closure issue is a challenge that also faces Prawitz’s own account
of mathematical induction and which points out to an epistemic gap that the
chain of modus ponens cannot bridge. One way to address the challenge is
to introduce suitable additional inferential operations that would allow to fill
the gap. We will end the paper by sketching such a possible solution.
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1 Introduction

Poincaré and Prawitz share a common philosophical interest in the nature of
reasoning by mathematical induction. For Poincaré, mathematical induction
constitutes mathematical reasoning par excellence and thereby takes cen-
tral stage in his philosophical analysis of mathematical reasoning (Poincaré,
1894) as well as in his critical discussion of the role of logic in the foun-
dations of mathematics (Poincaré, 1905, 1906). For Prawitz, mathematical
induction is the archetypal example of a deductive reasoning principle that

1The author would like to thank the participants at Logica 2014 as well as Jean Paul van
Bendegem, John Mumma, and Göran Sundholm for stimulating discussions relative to the con-
tent of this paper. The author is a doctoral fellow of the Research Foundation Flanders (FWO).
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governs inferences that are valid but not logically valid – i.e., whose conclu-
sions are not logical consequences of their premisses in the Bolzano-Tarski
sense – and thereby appears as the main example of application of his recent
account of the validity of deductive inferences (Prawitz, 2009, 2012, 2013).

In their respective analyses, Poincaré and Prawitz are both concerned
with the epistemological dimension of reasoning by mathematical induc-
tion. Poincaré (1894) aims to understand the capacity of mathematical in-
duction to extend mathematical knowledge,2 a feature that would distinguish
it from syllogistic reasoning which “can teach us nothing essentially new”
(Poincaré, 1894, p. 31).3 Prawitz (2009, 2012, 2013) aims to provide an
account of the validity of deductive inferences that would explain how one
can acquire knowledge by drawing valid inferences. When applied to math-
ematical induction, such an account would explain how one can acquire
knowledge by drawing mathematical induction inferences.

Interestingly, the two accounts developed by Poincaré and Prawitz in or-
der to explain how reasoning by mathematical induction can generate (new)
knowledge are very close to each other. More specifically, both consider that
what underlies an inference by mathematical induction – i.e., an inference
of the following form.

H(0)
H(p) ! H(p+ 1)

H(n)

where n and p are arbitrary natural numbers – is a chain of n inferences
by modus ponens which can be described in metaphorical terms as ‘start-
ing’ from the number 0 and ‘moving along’ the well-ordered structure of
the natural numbers up to the number n: the first inference consists in de-
ducing H(1) from the premisses H(0) and H(0) ! H(1), the pth infer-
ence (p > 0) consists in deducing H(p) from H(p � 1) and H(p � 1) !
H(p), and the nth inference consists in deducing H(n) from H(n� 1) and
H(n � 1) ! H(n).4 Thus, such an account of reasoning by mathematical
induction explains how one can deduce the proposition H(n) for any n 2 N
from the two premisses H(0) and H(p) ! H(p+ 1).

2Poincaré speaks of the “creative virtue” of mathematical reasoning (Poincaré, 1894, p. 32).
3See (Detlefsen, 1992) and (Heinzmann, 1995) for interpretations that take as central

the idea that the main difference between mathematical reasoning and logical reasoning for
Poincaré is an epistemological one.

4In this paper, we will refer to this inferential process as the chaining operation.
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Yet, at this stage, Poincaré’s and Prawitz’s analyses diverge in an im-
portant way. On the one hand, Prawitz considers that, insofar as the above
chaining operation allows to reach any n 2 N, it allows to establish that
H(n) holds for an arbitrary n 2 N, and so to conclude – by universal gen-
eralization – that the universal proposition 8nH(n) holds, resulting thereby
in the knowledge acquisition of the universal proposition 8nH(n). On the
other hand, Poincaré considers that, even though the above chaining opera-
tion allows to establish H(n) for any n 2 N, it does not allow to establish
the universal proposition 8nH(n), as this would require to draw an infinite
number of inferences. Poincaré concludes that, to obtain knowledge of the
universal proposition 8nH(n), an additional element is required and this is
precisely where Poincaré appeals to his own notion of intuition.

The aim of this paper is to understand what lies behind this divergence.
To this end, we will examine what we will call Poincaré’s closure issue
– i.e., the incapacity of the chaining operation to yield knowledge of the
universal proposition 8nH(n) – within Prawitz’s framework. We shall see
that Prawitz’s account of the validity of inferences offers a very suitable
framework for formulating precisely the closure issue. In turn, this will
allow us to examine the impact of Poincaré’s closure issue on Prawitz’s
own account of mathematical induction. We will see that the closure issue
points out to a certain gap in the inferential operations necessary for the
agent to acquire knowledge of the universal proposition 8nH(n). Thus, our
analysis will show a mutually fruitful interaction between Poincaré’s and
Prawitz’s analyses of mathematical induction: on the one hand, Prawitz’s
account of the validity of inferences provides a framework to formulate and
analyze in a precise way the main point of Poincaré’s analysis; on the other
hand, Poincaré’s analysis yields a central insight that can benefit directly to
Prawitz’s own account of mathematical induction.

The paper is organized as follows. We will begin by presenting Poinca-
ré’s and Prawitz’s accounts of mathematical induction respectively in sec-
tions 2 and 3. In section 4, we will present Poincaré’s closure issue, we
will show how it can be formulated within Prawitz’s framework in which
inferences are represented as operations on grounds and we will analyze its
impact on Prawitz’s account of mathematical induction. We shall see that
the closure issue points out to an epistemic gap that the chain of inferences
by modus ponens alone cannot bridge. One way to overcome this is to in-
troduce additional inferential operations that would allow to fill the gap. In
section 5, we will sketch such a possible solution by introducing two addi-
tional inferential operations that would allow to fill the gap.
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2 Poincaré on mathematical induction

Poincaré is well known for his opposition against philosophical views that
attribute a prominent role for logic in mathematics, views that emerge from
the early development of modern logic and set theory in the context of the
foundations of mathematics at the beginning of the 20th century.5 What is
maybe less known is that Poincaré already wrote a philosophical study on
the nature of mathematical reasoning as early as 1894,6 i.e., before most of
the developments in logic and set theory that he will discuss in (Poincaré,
1905, 1906), and a fortiori before he came aware of them. A central theme
of (Poincaré, 1894) was already to compare and contrast mathematical rea-
soning with logical reasoning – where logical reasoning was equated by
Poincaré with syllogistic reasoning. Poincaré took as the starting point of
his study that logical reasoning is epistemically sterile while mathematical
reasoning has a certain “creative virtue” or, in other words, that mathemat-
ical reasoning can extend mathematical knowledge while logical reason-
ing cannot. His aim was to provide an explanation of this epistemologi-
cal difference between the two types of reasoning. To this end, Poincaré
suggested to analyze mathematical reasoning in the branch of mathematics
where: “mathematical thought [. . . ] has remained pure, that is, in arith-
metics” (Poincaré, 1894, p. 34). Poincaré continued by examining some
of the most elementary proofs of arithmetic, namely the proofs of the basic
properties of addition (associativity, commutativity) and multiplication (dis-
tributivity, commutativity). Poincaré noticed a uniform principle of reason-
ing present in all these proofs, and this principle is precisely mathematical
induction. Poincaré concluded that:

If we look closely, at every step we meet again this mode of
reasoning, either in the simple form we have just given it, or
under a form more or less modified.

5See (Goldfarb, 1988) for a discussion of the arguments that Poincaré developed in his de-
bate ‘against the logicians’, among whom figure Cantor, Peano, Russell, Zermelo, and Hilbert.
For an overview of Poincaré’s work in the philosophy of mathematics and the philosophy of
science, we refer the reader to (Heinzmann & Stump, 2014).

6We refer here to the paper (Poincaré, 1894) entitled ‘Sur la Nature du Raisonnement Math-
ématique’ (‘On the Nature of Mathematical Reasoning’). The paper has been reprinted as the
first chapter of the book (Poincaré, 1902) entitled Science et Hypothèse (Science and Hypoth-
esis), which has been translated into English in (Poincaré, 1929). All the quotations from
(Poincaré, 1894) in the present paper are taken from the translation provided in (Poincaré,
1929).
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Here then we have the mathematical reasoning par excellence,
and we must examine it more closely. (Poincaré, 1894, p. 37)

The conception of reasoning by mathematical induction that Poincaré
pushes forwards is then spelled out in the following passage:

The essential characteristic of reasoning by recurrence is that it
contains, condensed, so to speak, in a single formula, an infinity
of syllogisms.
That this may the better be seen, I will state one after another
these syllogisms which are, if you will allow me the expression,
arranged in ‘cascade.’
These are of course hypothetical syllogisms.
The theorem is true of the number 1.
Now, if it is true of 1, it is true of 2.
Therefore it is true of 2.
Now, if it is true of 2, it is true of 3.
Therefore it is true of 3, and so on. (Poincaré, 1894, p. 37)

Three central points of Poincaré’s conception of mathematical induction are
presented here. Firstly, Poincaré considers that reasoning by mathematical
induction is composed of ‘smaller’ inferential steps that take the form of hy-
pothetical syllogisms. What Poincaré means by hypothetical syllogisms are
simply inferences by modus ponens which, in the context of mathematical
induction, take the following form:

H(p)
H(p) ! H(p+ 1)

H(p+ 1)

where p denotes an arbitrary natural number. Secondly, these hypothetical
syllogisms are organized in a ‘cascade’. If we call the above inference or
hypothetical syllogism I

p

, this means that an inference by mathematical in-
duction consists in chaining hypothetical syllogisms of the above form in
the sequence I1, I2, . . . , Ip, . . . etc. Thirdly, and this is maybe the most im-
portant point, insofar as such a sequence of hypothetical syllogisms goes ad
infinitum, an inference by mathematical induction requires to draw an infin-
ity of hypothetical syllogisms. As we shall see in section 4, it is precisely
this appeal to infinity that lies at the heart of the epistemological difference
between mathematical reasoning and logical reasoning in Poincaré’s view.
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3 Prawitz on mathematical induction

In his most recent work (Prawitz, 2009, 2012, 2013), Prawitz has developed
a new account of the validity of deductive inferences that aims to explain
how one can acquire knowledge by drawing valid inferences. To this end,
Prawitz has proposed to re-conceptualize the notions of inference and the
validity thereof in a way that such a desideratum comes out as a concep-
tual truth. More specifically, Prawitz proposes to think of an inference as
comprising not only a set of premisses and a conclusion, but also an oper-
ation7 that acts on grounds for the premisses and which hopefully would
yield a ground for the conclusion. An inference is then said to be valid in
case such an operation does indeed yield a ground for the conclusion when
applied to grounds for the premisses. Given such a re-conceptualization, the
above desideratum becomes immediately fulfilled: if we consider that one
has knowledge of a given proposition when one has a ground for it,8 then
by drawing a valid inference for which one has grounds for its premisses,
one automatically obtains a ground for its conclusion and thereby acquires
knowledge of it. Of course, to complete such an account requires to make
precise the notions of operation and ground, and we shall now see how this
is spelled out.

In Prawitz’s framework, the notion of ground is intimately connected to
the one of meaning:

The line that I shall take is [. . . ] roughly that the meaning of
a sentence is determined by what counts as a ground for the
judgement expressed by the sentence. Or expressed less lin-
guistically: it is constitutive for a proposition what can serve as
a ground for judging the proposition to be true. From this point
of view I shall specify for each compound form of proposition
expressible in first order languages what constitutes a ground
for an affirmation of a proposition of that form. (Prawitz, 2009,
pp. 191–192)

Prawitz (2009) provides such specifications for the propositions of first-
order logic that are formed using conjunction, implication and universal
quantification. The specifications for the different compound forms fol-
low the same scheme: one should specify how a ground for the compound

7We sometimes use equivalently the term inferential operation.
8This is the view of knowledge that Prawitz focuses on in this context (see Prawitz, 2012,

p. 890).
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proposition is obtained from its components, and this is achieved by spec-
ifying the grounding operation associated to each compound form. For in-
stance, in the case of conjunction, Prawitz proposes the following specifica-
tion: ↵ is a ground for the conjunction ' ^  if and only if ↵ = ^G(�, �)
for some � and � such that � is a ground for ' and � is a ground for  . In
this specification, the conjunction grounding operation ^G, specifies how
grounds for propositions of the form '^ are formed given grounds for the
components ' and  .

In order to be able to deal with inferences drawn from assumptions,
Prawitz introduces a distinction between saturated and unsaturated grounds.
An unsaturated ground ↵(⇠1, . . . , ⇠n) for a proposition ' under the assump-
tions '1, . . . ,'n

is a function that takes as arguments saturated grounds
�1, . . . ,�n for '1, . . . ,'n

and yields a saturated ground ↵(�1, . . . ,�n) for
'. Furthermore, in order to deal with inferences involving open propo-
sitions, an additional distinction is introduced between closed and open
grounds. An open ground ↵(x) is simply a ground for an open proposi-
tion '(x), where the variable(s) in parentheses denotes the free variable(s)
in the considered open proposition. Similarly, a closed ground is a ground
for a closed proposition. It is important to notice that the two distinctions
saturated-unsaturated and closed-open are independent from each other –
one can have closed and open saturated grounds as well as closed and open
unsaturated grounds.

The distinction between saturated and unsaturated grounds enables to
formulate the implication grounding operation ! G which specifies how a
saturated ground for a proposition ' !  is formed from an unsaturated
ground �(⇠) for ' under the assumption  : ↵ is a ground for ' !  if
and only if ↵ = ! G

⇠

(�(⇠)) where �(⇠) is an unsaturated ground for  
under the assumption '. Furthermore, the distinction between closed and
open grounds enables to formulate the universal grounding operation 8G
which specifies how a closed ground for a proposition of the form 8x'(x)
is formed from an open ground �(x) for the open proposition '(x): ↵ is a
ground for 8x'(x) if and only if ↵ = 8G

x

(�(x)) where �(x) is an open
ground for '(x).

The other key notion of Prawitz’s framework is the one of operation
on grounds. The three grounding operations ^G, ! G and 8G that we
have just defined are typical examples of operations on grounds. Indeed,
those operations can be seen as corresponding closely to certain inference
rules, namely the introduction rules for conjunction, implication and univer-
sal quantification in Gentzen’s system of natural deduction. Thus, we can
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now see how inferences that are made according to those inference rules
are represented and categorized as valid in Prawitz’s account. For instance,
drawing an inference with premisses ' and  and conclusion '^ accord-
ing to the introduction rule for conjunction is represented as performing the
operation ^G on grounds � and � respectively for ' and  which results in
the obtention of a ground � = ^G(�, �). This inference is categorized as
valid insofar as � = ^G(�, �) is indeed a ground for ' ^  in virtue of the
meaning of ' ^  , i.e., in virtue of what constitutes a ground for ' ^  .

The interest of Prawitz’s account lies in its capacity to define more com-
plex inferential operations, and thereby to account for more complex infer-
ences, than these primitive ones. In particular, we now have all the elements
to spell out how inferences by modus ponens and by mathematical induction
– the two types of inferences central to the subject matter of this paper – can
be represented within this framework. To this end, we should specify the
inferential operations associated to these two types of inferences.

Modus ponens is an inference schema with premisses ' and '!  , and
conclusion  . Prawitz (2009, p. 197) defines the inferential operation MP
associated to modus ponens by the following equation

MP(↵,�(⇠)) = �(↵)

where ↵ is a ground for ' and �(⇠) is an unsaturated ground for  under the
assumption '.9 We can immediately see that such an inferential operation,
when applied to grounds for ' and ' !  , yields a ground for  since,
by definition of unsaturated grounds, the result of saturating the unsaturated
ground �(⇠) by a saturated ground ↵ for ' is a saturated ground �(↵) for  .
Modus ponens is thus an inference schema that generates valid inferences
since the inferential operation MP, when applied to grounds for premisses
of the forms ' and '!  , yields a ground for the conclusion  .

The inferential operation associated to mathematical induction has been
informally described by Prawitz as follows:

Let us consider the inference form of mathematical induction,
in which it is concluded that a sentence A(n) holds for an ar-
bitrary natural number n, having established the induction base

9Insofar as the second premiss of an inference by modus ponens is a proposition of the
form ' !  , the correct way to write a ground for such a proposition is ! G

⇠

(�(⇠)) where
�(⇠) is an unsaturated ground for  under the assumption '. For readability reasons, we abuse
notation and just write �(⇠) instead of ! G

⇠

(�(⇠)).
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that A(0) holds and the induction step that A holds for the suc-
cessor n0 of any natural number n given that A holds for n. The
ground for the induction step may be thought of as a chain of
operations that results in a ground for A(n0) when applied to a
ground for A(n). The operation that is involved in this infer-
ence form may roughly be described as the operation which, for
any given n, takes the given ground for A(0) and then succes-
sively applies the chain of operations given as ground for the
induction step n times. (Prawitz, 2013, p. 199)

Prawitz (2012, p. 897) provides a precise formulation of this informal de-
scription. In order to state it, it will be useful to introduce some convenient
notations. We assume that we are working with the language of first-order
Peano Arithmetic. We denote variables of the language by x, y, and con-
stants or numerals by n, p.10 Prawitz (2012) states mathematical induction
as an inference schema with premisses H(0) and H(y) ! H(y + 1) and
conclusion H(n). We introduce the following notations for grounds of the
relevant proposition forms, where ‘↵ : '’ should be read as ‘↵ is a ground
for '’:11

↵0 : H(0) �0(⇠0) : H(1) under the assumption H(0)
↵
n

: H(n) �
p

(⇠
p

) : H(p+ 1) under the assumption H(p)
↵(x) : H(x) �(y, ⇠

y

) : H(y + 1) under the assumption H(y)

We can now state precisely the inferential operation of mathematical induc-
tion following (Prawitz, 2012, p. 897):

INDn

⇠y

(↵0,�(y, ⇠y)) =

(
↵0 if n = 0

MP
⇣
INDn�1

⇠y

(↵0,�(y, ⇠y)),�n�1(⇠n�1)
⌘

if n > 0

This definition by recursion aims to capture the idea that the inferential oper-
ation of mathematical induction consists in a chain of applications of modus
ponens as informally described in the previous quote as well as in the intro-
duction of this paper, and corresponding to Poincaré’s notion of ‘cascade’.
Prawitz (2012) shows that the operation INDn

⇠y

does indeed yield a ground

10We assume that we have numerals in the language available to denote all the natural num-
bers. We will use the same notation for the numeral and the number it refers to.

11For Prawitz, “Grounds are naturally typed by the propositions they are grounds for”
(Prawitz, 2009, p. 193). This aspect is rendered here by introducing specific notations for
the type of grounds associated to the different proposition forms that will be involved in the
present discussion.
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for H(n) given grounds ↵0 for H(0) and �(y, ⇠
y

) for H(y + 1) under the
assumption H(y), and this for any n 2 N. As we shall now see, Poincaré
agrees on this point, but contests that we can infer from this that the agent
can obtain a ground for the universal proposition 8xH(x) in this way.

4 The closure issue

Both Poincaré and Prawitz consider that the chaining operation underlies
inferences by mathematical induction. Furthermore, Poincaré agrees with
Prawitz that the chaining operation allows one to acquire knowledge of the
proposition H(n), and this for any n 2 N, as witnessed by the following
passage:

If instead of showing that our theorem is true of all numbers, we
only wish to show it true of the number 6, for example, it will
suffice for us to establish the first 5 syllogisms of our cascade;
9 would be necessary if we wished to prove the theorem for
the number 10; more would be needed for a larger number;
but, however great this number might be, we should always end
by reaching it, and the analytic verification would be possible.
(Poincaré, 1894, p. 38)

This observation of Poincaré – that the chaining operation allows one to
reach knowledge of the proposition H(n) however great n might be – can
be shown formally within Prawitz’s framework:

Proposition 1 If an agent has at her disposal (i) a ground ↵0 for H(0)
and a ground �(y, ⇠

y

) for H(y+1) under the assumption H(y) and (ii) the
inferential operation MP, then the agent can obtain a ground for H(n) by
drawing n inferences, and this for any n 2 N.

Proof. This can be shown by a simple induction on n.
Base case: The agent can obtain a ground for H(1) by applying MP to the
grounds ↵0 for H(0) and �0(⇠0) for H(1) under the assumption H(0), as
this would yield the ground �0(↵0) which is a ground for H(1).
Induction case: Assume that the agent can obtain a ground for H(n) by
drawing n inferences. Let ↵

n

be such a ground for H(n). The agent pos-
sesses then a ground ↵

n

for H(n) and a ground �
n

(⇠
n

) for H(n+1) under
the assumption H(n) (obtained from �(y, ⇠

y

) by universal instantiation).
Thus, the agent can apply MP to ↵

n

and �
n

(⇠
n

), obtaining thereby a ground
�
n

(↵
n

) for H(n+ 1).
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However, Poincaré considers that the chaining operation is insufficient to
reach knowledge of the universal proposition 8xH(x), as Poincaré puts it:

And yet, however far we thus might go, we could never rise to
the general theorem, applicable to all numbers, which alone can
be the object of science. To reach this, an infinity of syllogisms
would be necessary; it would be necessary to overleap an abyss
that the patience of the analyst, restricted to the resources of
formal logic alone, never could fill up. (Poincaré, 1894, p. 38)

Thus, what prevents the chaining operation to reach knowledge of the uni-
versal proposition 8xH(x), according to Poincaré, is precisely that this
would require to draw an infinite number of inferences, and this is what
we refer to as the closure issue. As expressed in the last sentence of the
above passage, Poincaré attributes this limitation to the resources of logical
reasoning.

The closure issue can be established formally within Prawitz’s frame-
work. To this end, we first need to prove the following lemma:

Lemma 1 If an agent only has at her disposal (i) a ground ↵0 for H(0)
and a ground �(y, ⇠

y

) for H(y + 1) under the assumption H(y) and (ii)
the inferential operation MP, then the only grounds the agent can obtain by
drawing n inferences are grounds for the propositions H(1), . . . , H(n).

Proof. The proof goes by induction on the number of inferences n.
Base case: We have to show that the only ground the agent can obtain
by drawing a single inference is a ground for H(1). We first notice that,
in order to apply the inferential operation MP, the agent needs to be in
possession of a ground for a proposition ' and a ground for a proposition of
the form '!  . By assumption, the two grounds that the agent has initially
are grounds ↵0 for H(0) and �(y, ⇠

y

) for H(y + 1) under the assumption
H(y). Thus, the only grounds to which the agent can apply MP are ↵0 for
H(0) and �0(⇠0) for H(1) under the assumption H(0), and this would yield
�0(↵0) which is a ground for H(1). Hence, the only ground the agent can
obtain by drawing a single inference is a ground for H(1).
Induction case: Assume that the only grounds the agent can obtain by
drawing n inferences are grounds for the propositions H(1), . . . , H(n).
Again, in order to apply the inferential operation MP, the agent needs to be
in possession of a ground for a proposition ' and a ground for a proposition
of the form '!  . By induction hypothesis, the only grounds the agent can
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possess after n inferences are grounds for the propositions H(1), . . . , H(n),
in addition to the grounds ↵0 for H(0) and �(y, ⇠

y

) for H(y+ 1) under the
assumption H(y) that the agent possessed initially. Thus, the only pairs
of grounds to which the agent can apply the inferential operation MP are
(↵0,�0(⇠0)), . . . , (↵n

,�
n

(⇠
n

)). It follows that the ground the agent can
obtain by applying MP in this case is necessarily a ground for one of the
propositions H(1), . . . , H(n+ 1).

Poincaré’s closure issue is a direct consequence of Lemma 1 and can be
formalized as follows:

Proposition 2 (Closure Issue) If an agent only has at her disposal (i) a
ground ↵0 for H(0) and a ground �(y, ⇠

y

) for H(y + 1) under the as-
sumption H(y) and (ii) the inferential operation MP, then the agent cannot
obtain a ground ↵(x) for H(x) by drawing a finite number of inferences.12

Proof. This follows directly from Lemma 1.

This proposition is the direct formalization of Poincaré’s closure issue within
Prawitz’s framework. Given that Prawitz’s informal description of the infer-
ential operation of mathematical induction in the quote of section 3 is similar
to the ‘cascade’ operation provided by Poincaré, the closure issue does ap-
ply as well to Prawitz’s account of mathematical induction. Indeed, we can
even show that the inferential operations INDn

⇠y

defined in section 3 provide
insufficient means to obtain a ground for the universal proposition 8xH(x):

Proposition 3 If an agent only has at her disposal (i) a ground ↵0 for
H(0) and a ground �(y, ⇠

y

) for H(y + 1) under the assumption H(y) and
(ii) the inferential operations INDn

⇠y

for all n 2 N, then the agent cannot
obtain a ground ↵(x) for H(x) by drawing a finite number of inferences.

Proof. This can be proved by induction in a similar fashion as in Lemma 1
and Proposition 2.

12Since one can easily pass from a ground ↵(x) for H(x) to a ground � = 8G
x

(↵(x))
for 8xH(x) and the other way around by applying the inferential operations corresponding
respectively to the introduction and elimination rules for universal quantification in natural
deduction, we do not necessarily distinguish between the two cases in the present discussion.
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5 A possible solution

One could expect that Poincaré’s conclusion from the closure issue is a skep-
tical one – namely that it is simply impossible to acquire knowledge of the
universal proposition 8xH(x). This is not the case. Poincaré does think that
it is possible to acquire knowledge of the universal proposition 8xH(x). His
conclusion from the closure issue is rather that logical or syllogistic reason-
ing provides insufficient means to acquire knowledge of 8xH(x). Poincaré
explains then our capacity to acquire knowledge of 8xH(x) by appealing to
another mean of knowledge acquisition, namely intuition:

Why then does this judgment force itself upon us with an ir-
resistible evidence? It is because it is only the affirmation of
the power of the mind which knows itself capable of conceiv-
ing the indefinite repetition of the same act when once this act
is possible. The mind has a direct intuition of this power, and
experience can only give occasion for using it and thereby be-
coming conscious of it. (Poincaré, 1894, p. 39)

Unfortunately, this passage contains all what Poincaré has to say on the role
of intuition in mathematical induction in (Poincaré, 1894). In the remainder
of this paper, our goal is not to propose a detailed analysis of what Poincaré
could mean here by intuition. Rather, we propose to sketch a solution to the
closure issue based on a straightforward interpretation of the above passage.

Poincaré says that the mind has the capacity to conceive “the indefinite
repetition of the same act when once this act is possible”. Taken at face
value, this statement states that the mind is in possession of an inferential
operation that allows to take the limit or closure, so to speak, of the chaining
operation. This could be formalized in Prawitz’s framework by introducing
an inferential operation IND1

⇠y

which would correspond to what would be
achieved by carrying out the chaining operation ad infinitum:13

IND1
⇠y

(↵,�(y, ⇠
y

)) = lim
n!1

INDn

⇠y

(↵,�(y, ⇠
y

)) =
[

n2N
INDn

⇠y

(↵,�(y, ⇠
y

))

Yet, this inferential operation would still be insufficient to acquire a ground
for the universal proposition 8xH(x), as shown by the following proposi-
tion:

13We use here the set-theoretic notion of limit. For readability reasons, we identify the
ground INDn

⇠y

(↵,�(y, ⇠
y

)) with the singleton {INDn

⇠y

(↵,�(y, ⇠
y

))}.
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Proposition 4 If an agent only has at her disposal (i) a ground ↵0 for
H(0) and a ground �(y, ⇠

y

) for H(y + 1) under the assumption H(y) and
(ii) the inferential operation IND1

⇠y

, then the agent cannot obtain a ground
↵(x) for H(x) by drawing a finite number of inferences.

Proof. The operation IND1
⇠y

only produces grounds for propositions of the
form H(n), and so will never be able to output a ground for a proposition
of the form H(x). This can be shown by a straightforward induction on the
number of inferences in a similar fashion as in the proof of Lemma 1.

Nevertheless, by carrying out the operation IND1
⇠y

on grounds for H(0) and
H(y) ! H(y + 1), one would already be in possession of grounds for
all the propositions of the form H(n) with n 2 N. To reach a ground for
8xH(x), it suffices to introduce a further inferential operation which would
take as inputs the grounds (↵

n

)
n2N for (H(n))

n2N and which would out-
put a ground for H(x). Surprisingly, such an operation corresponds exactly
to what is known as the !-Rule in the field of proof theory. This inferen-
tial operation would take grounds (↵

n

)
n2N respectively for the propositions

(H(n))
n2N and be defined by the following equation:

!-R ((↵
n

)
n2N) = ↵(x)

We can now show that, when the agent disposes of the inferential operations
IND1

⇠y

and !-R, she has the capacity to acquire knowledge of 8xH(x):

Proposition 5 If an agent has at her disposal (i) a ground ↵0 for H(0)
and a ground �(y, ⇠

y

) for H(y+1) under the assumption H(y) and (ii) the
inferential operations IND1

⇠y

and !-R, then the agent can obtain a ground
↵(x) for H(x) by drawing a finite number of inferences.

Proof. By applying the inferential operation IND1
⇠y

to ↵0 and �(y, ⇠
y

), the
agent will obtain the set of grounds

S
n2N INDn

⇠y

(↵,�(y, ⇠
y

)). Given that
INDn

⇠y

(↵,�(y, ⇠
y

)) is a ground for H(n), the agent is then in possession of
a ground ↵

n

for H(n) and this for all n 2 N. The agent can then apply the
operation !-R to (↵

n

)
n2N, obtaining thereby a ground ↵(x) for H(x).
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6 Conclusion

Poincaré’s and Prawitz’s accounts of mathematical induction are facing the
same challenge raised by the closure issue. This challenge must be ad-
dressed for the two accounts to reach their objective, namely to account for
knowledge acquisition through reasoning by mathematical induction. We
have provided a possible solution to this challenge by introducing two infer-
ential operations IND1

⇠y

and !-R. However, this would qualify as a potential
solution only insofar as it is epistemologically acceptable for the agent to
possess and carry out such inferential operations. To determine whether this
is so requires an epistemological analysis that is left to further investigations.
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