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Abstract

Mathematical proof is the primary form of justification for mathematical knowledge, but
in order to count as a proper justification for a piece of mathematical knowledge, a math-
ematical proof must be rigorous. What does it mean then for a mathematical proof to
be rigorous? According to what I shall call the standard view, a mathematical proof is
rigorous if and only if it can be routinely translated into a formal proof. The standard
view is almost an orthodoxy among contemporary mathematicians, and is endorsed by
many logicians and philosophers, but it has also been heavily criticized in the philosophy
of mathematics literature. Progress on the debate between the proponents and opponents
of the standard view is, however, currently blocked by a major obstacle, namely the absence
of a precise formulation of it. To remedy this deficiency, I undertake in this paper to pro-
vide a precise formulation and a thorough evaluation of the standard view of mathematical
rigor. The upshot of this study is that the standard view is more robust to criticisms than
it transpires from the various arguments advanced against it, but that it also requires a
certain conception of how mathematical proofs are judged to be rigorous in mathematical
practice, a conception that can be challenged on empirical grounds by exhibiting rigor
judgments of mathematical proofs in mathematical practice conflicting with it.
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1 Introduction

Mathematical proof is the primary form of justification of mathematical knowledge. But
in order to count as a proper mathematical proof, and thereby to function properly as a
justification for a piece of mathematical knowledge, a mathematical proof must be rigorous.
The philosopher and logician John P. Burgess, in his book entitled Rigor & Structure (Burgess,
2015), put it as follows:

The quality whose presence in a purported proof makes it a genuine proof by
present-day journal standards, and whose absence makes the proof spurious in a
way that if discovered will call for retraction, is called rigor. (Burgess, 2015, p. 2)

Any account of mathematical knowledge that does not provide a satisfactory characterization
of rigor as a quality of mathematical proof necessarily fails to capture an essential aspect of the
justification of mathematical knowledge, and for this reason shall be considered as inherently
incomplete. Providing a philosophical account of what it means for a mathematical proof to
be rigorous constitutes thus a central task for the epistemology of mathematics.

It may be argued that the issue was solved almost a century ago with the revolutionary
logical and philosophical developments happening in the foundations of mathematics. In this
regard, it is often considered that the notion of formal proof, together with the identification
of a set of axioms from which all of ordinary mathematics could be deduced, provide all the
necessary elements for characterizing what it means for a mathematical proof to be rigorous.
Such a characterization has been formulated by the mathematician Saunders Mac Lane:

A Mathematical proof is rigorous when it is (or could be) written out in the first
order predicate language L(∈) as a sequence of inferences from the axioms ZFC,
each inference made according to one of the stated rules. (Mac Lane, 1986, p. 377)

According to this view, a mathematical proof P is rigorous if and only if P complies to the
standards of formal proof in one of the accepted formal deductive systems for the foundations
of mathematics. This characterization, however, sets the standards too high. It is widely
acknowledged that the mathematical proofs to be found in ordinary mathematical practice
deviate significantly from the standards of formal proof.1 For this reason, adopting such
a characterization of rigor in an account of mathematical knowledge would have for direct
consequence that the vast majority of mathematical knowledge we presumably have would
not qualify as such, since it is justified by mathematical proofs that do not comply to the
standards of formal proof.

Although the above characterization does not capture what it means for a mathematical
proof to be rigorous in mathematical practice, it does set an ideal or absolute standard of
rigor. Insofar as this ideal cannot be attained in practice, it has been proposed that it could
still be reached in principle. Thus, Mac Lane pursued the above passage as follows:

To be sure, practically no one actually bothers to write out such formal proofs.
In practice, a proof is a sketch, in sufficient detail to make possible a routine
translation of this sketch into a formal proof. When a proof is in doubt, its repair
is usually just a partial approximation of the fully formal version. (Mac Lane,
1986, p. 377)

1As the mathematician Thomas Hales put it: “The ultimate standard of proof is a formal proof, which is
nothing other than an unbroken chain of logical inferences from an explicit set of axioms. While this may be
the mathematical ideal of proof, actual mathematical practice generally deviates significantly from the ideal”
(Hales, 2012, p. x).
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According to this view, a mathematical proof P is rigorous if and only if P can be routinely
translated into a formal proof. The view presumably originates from Mac Lane’s Göttin-
gen dissertation entitled Abgekürzte Beweise in Logikkalkul (Mac Lane, 1934), and has been
disseminated in the mathematical community with the first book of Bourbaki’s Élements de
Mathématique (Bourbaki, 1970). This latter treatise contains, at the very beginning of its
introduction, the following similar expression of the view:

In practice, the mathematician who wishes to satisfy himself of the perfect correct-
ness or “rigour” of a proof or a theory hardly ever has recourse to one or another
of the complete formalizations available nowadays, nor even usually to the incom-
plete and partial formalizations provided by algebraic and other calculi. In general
he is content to bring the exposition to a point where his experience and math-
ematical flair tell him that translation into formal language would be no more
than an exercise of patience (though doubtless a very tedious one). If, as happens
again and again, doubts arise as to the correctness of the text under consideration,
they concern ultimately the possibility of translating it unambiguously into such a
formalized language [. . . ] [T]he process of rectification, sooner or later, invariably
consists in the construction of texts which come closer and closer to a formalized
text until, in the general opinion of mathematicians, it would be superfluous to go
any further in this direction. (Bourbaki, 1970, p. 8)

This view constitutes almost an orthodoxy among contemporary mathematicians—probably
as a direct influence of Bourbaki’s heritage—and I shall therefore refer to it as the standard
view of mathematical rigor (henceforth, the standard view).2

The standard view is endorsed today by many philosophers, logicians, and mathematicians—
see, e.g., Avigad (2006), Burgess (2015), and Weir (2016), among others.3 But the view has
also been heavily criticized in the literature, most notably by Robinson (1997), Hersh (1997),
Detlefsen (2009), Antonutti Marfori (2010), Larvor (2012, 2016), and Tanswell (2015). Deter-
mining whether the standard view should be maintained, revised, or rejected is today one of
the most pressing issues regarding the nature of mathematical rigor and proof.

The debate between the proponents and opponents of the standard view suffers, however,
from a deficiency that threatens to block any significant progress, that is, the absence of a
precise formulation of the standard view. As a consequence, this debate runs the risk of resting
upon confusions of what the view actually means. The present work purports to remedy this
deficiency by providing a precise formulation of the standard view. This will make it possible,
in turn, to conduct a proper examination of the arguments against and in favor of it. The
aim of this paper is thus to provide a precise formulation and a thorough evaluation of the
standard view of mathematical rigor.

In this project, it will be of primary importance to introduce a distinction between what
we shall call a descriptive account and a normative account of mathematical rigor. The
distinction can be stated as follows: a descriptive account of mathematical rigor provides a
characterization of the mechanisms by which mathematical proofs are judged to be rigorous

2The same terminology is adopted by Antonutti Marfori (2010), while Detlefsen (2009) refers to it as the
common view.

3Azzouni (2004, 2006, 2009, 2013) has defended a view that he has called the derivation-indicator view and
in which mathematical proofs indicate formal derivations. The derivation-indicator view bears some similarities
to the standard view in that it accounts for the rigor of mathematical proofs through a certain relation to
formal proofs, but it also distinguishes itself from Mac Lane’s and Bourbaki’s original formulation by rejecting
the idea that mathematical proofs are abbreviations or sketches of formal proofs (see Azzouni (2006, pp. 148–
150) and Azzouni (2013, p. 248)). In this paper, I will focus on the standard view since this is the view that
has been driving the contemporary discussions on mathematical rigor and proof. A detailed comparison of the
standard view and the derivation-indicator view is called for to do full justice to the subtleties of Azzouni’s
view.
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in mathematical practice; a normative account of mathematical rigor stipulates one or more
conditions that a mathematical proof ought to satisfy in order to qualify as rigorous.

Taken at face value, the standard view provides a normative account of mathematical
rigor, where the condition that a mathematical proof P ought to satisfy in order to qualify as
rigorous is that P can be routinely translated into a formal proof.4 The motivation behind
this condition can be read directly from the passages of Mac Lane and Bourbaki quoted above,
and originates from the issue that arises when one wishes to maintain formal proof as the ideal
of proof while realizing that this ideal is not reachable in practice (for the simple reason that
the length of formal proofs would render them unmanageable for any human being). The
condition that P can be routinely translated into a formal proof offers some sort of a middle
ground to solve this issue: it provides a less demanding condition for qualifying mathematical
proofs as rigorous which, one might hope, could be met in practice, while allowing to maintain
a certain connection with formal proofs, i.e., with the ideal of proof.

Yet, if the standard view would only amount to a normative account of mathematical
rigor, it would not provide much of an epistemological grip, for stating a normative condition
is harmless until one somehow commits to it in practice. This is why Mac Lane and Bourbaki
do consider that the above normative condition does bind rigor judgments of mathematical
proofs in mathematical practice—this is manifest in the passages quoted previously, where
both Mac Lane’s and Bourbaki’s descriptions of the standard view are preceded by the phrase
“in practice”. This means that, from their perspectives, one can legitimately qualify a math-
ematical proof P as rigorous only when one possesses some grounds for holding that P can
be routinely translated into a formal proof. But how then, according to this conception, can
one ever be able to legitimately qualify a mathematical proof P as rigorous in mathematical
practice? The most natural way to make sense of this, it seems, is to think of the propo-
nents of the standard view as possessing an implicit conception of the mechanisms by which
mathematical proofs are judged to be rigorous in mathematical practice—i.e., as possessing
an implicit descriptive account of mathematical rigor—together with some reasons for holding
that whenever a mathematical proof P has been judged as rigorous according to these mecha-
nisms, P can be routinely translated into a formal proof, i.e., P satisfies the above normative
condition. This idea lies at the basis of the present attempt to provide a precise formulation
of the standard view.

Thus, we shall take the standard view as embedding both a descriptive account and a
normative account of mathematical rigor, and as stating a certain relation between them. We
shall refer to the descriptive account as the descriptive part of the standard view, and say that
a mathematical proof P is rigorousD if and only if P would be judged to be rigorous according
to the mechanisms inherent to this descriptive account. We shall refer to the normative
account as the normative part of the standard view, and say that a mathematical proof P
is rigorousN if and only if P can be routinely translated into a formal proof. The relation
between the descriptive part and the normative part of the standard view expresses then a
substantial philosophical thesis, namely that the practice conforms to the normative condition
stated in the normative part. We shall refer to this as the conformity thesis, and shall state it
at follows: for any mathematical proof P , P is rigorousD implies that P is rigorousN .

From this perspective, a proponent of the standard view must hold (1) a precise conception
of what it means for a mathematical proof to be rigorousD, (2) a precise conception of what it
means for a mathematical proof to be rigorousN , (3) some reasons for holding the conformity
thesis. This suggests, in turn, a three-step methodology to reach a precise formulation of the
standard view: (1) specify the descriptive part of the standard view, i.e., characterize what

4The standard view cannot be meaningfully read as a descriptive account of mathematical rigor, for it does
not say anything on how mathematical proofs are judged to be rigorous in mathematical practice. As we shall
see later on, several of the arguments against the standard view originates from a reading of the standard view
as providing a descriptive account of mathematical rigor.

4



it means for a mathematical proof to be rigorousD; (2) specify the normative part of the
standard view, i.e., characterize what it means for a mathematical proof to be rigorousN ; (3)
identify the reasons for holding the conformity thesis. This is precisely the methodology to
be adopted in this paper in order to provide a precise formulation of the standard view of
mathematical rigor.

Before moving further, it is important to say explicitly at the outset, and to keep in mind all
along, what the standard view is meant to accomplish. The raison d’être of the standard view
is to be found in its capacity of dealing with the facts that, on the one hand, formal proof is
considered to be the contemporary ideal of proof in present-day mathematics, but on the other
hand, this ideal is not reachable in practice. What the standard view provides is a tie between
the practice of proof and the ideal of proof, thus allowing to maintain the contemporary ideal
of proof while admitting that it cannot be reached in practice. It is precisely in this tie that
lies the philosophical core of the standard view. It is also for this reason that the debate
between the proponents and the opponents of the standard view requires dedicated attention,
for if the standard view is shown to be philosophically untenable, this would have for direct
consequence to break the tie between the practice and the ideal of proof. And in the absence
of a viable alternative to restore such a tie, this would force to give up, or at least revise, the
contemporary ideal of proof. Such an issue would then be of primary importance not only for
the philosophy of mathematics, but for the contemporary practice of mathematics itself.

The paper is organized as follows. Section 2 comes back to the historical roots of the
standard view in the works of Mac Lane and Bourbaki. Section 3 proposes a general schema
for the formulation of any descriptive account of mathematical rigor, specifying thereby what
is to be expected of a descriptive account of mathematical rigor. Section 4, 5, and 6, are
concerned with the three elements of the standard view—the descriptive part, the normative
part, and the conformity thesis—which, taken together, provide a precise formulation of the
standard view. Section 7 evaluates, from the point of view of this formulation, the main
arguments that have been advanced against the standard view. Section 8 develops and assesses
an argument in favor of the standard view based on an approach originally proposed by Mark
Steiner (1975). Section 9 ends this paper by wrapping-up the main conclusions of our study.

2 Historical roots: Mac Lane and Bourbaki on mathematical
rigor

In order to provide a precise formulation of the standard view, it is necessary to first come
back to its historical roots, that is, to its original formulations by Mac Lane and Bourbaki. It
is then interesting to notice that neither Mac Lane nor Bourbaki had the intention to provide
a philosophical account of mathematical rigor as a quality of mathematical proof. Rather,
their conceptions of the rigor of mathematical proofs, as expressed in the passages quoted in
the introduction, appear as a consequence of the general projects they were undertaking. In
order to understand Mac Lane’s and Bourbaki’s original formulations of the standard view, we
shall, in this section, review the essential elements of these projects as presented by Mac Lane
in his Göttingen dissertation entitled Abgekürzte Beweise im Logikkalkul (“Abbreviated Proofs
in the Calculus of Logic”) (Mac Lane, 1934) as well as in the associated paper (Mac Lane,
1935), and by Bourbaki in the first book of the Éléments de Mathématique entitled Théorie
des Ensembles (Bourbaki, 1970). We shall then see how their formulations of the standard
view follow naturally from the projects they were undertaking.
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2.1 Mac Lane on mathematical rigor

Although Mac Lane is often invoked in the philosophical literature as a main proponent of
the standard view, and the quote from Mac Lane (1986) reported in the introduction is often
considered as the archetypal formulation of the standard view, it is only rarely mentioned
that the standard view finds its origins in Mac Lane’s Göttingen dissertation in mathemat-
ical logic, which was precisely concerned with the analysis of the structure of mathematical
proofs. And yet, as we shall now see, being acquainted with the content of Mac Lane’s dis-
sertation (Mac Lane, 1934), as well as with the associated paper (Mac Lane, 1935), turns
out to be essential in order to understand the formulation of the standard view expressed in
Mac Lane (1986), and in particular to understand Mac Lane’s conception of the notion of
routine translation central to it.

The main goal of Mac Lane’s dissertation was to develop, within the field of mathematical
logic, a richer theory of the structure of mathematical proofs.5 One part of his doctoral project
was then dedicated to providing a precise analysis of the inferential steps consituting ordinary
mathematical proofs—what we shall call mathematical inferences.6 To this end, Mac Lane’s
starting point was the view that mathematical inferences can be seen as specific combinations
of the elementary types of inferences usually investigated in mathematical logic at the time. An
analysis of mathematical inferences could then be obtained by identifying and characterizing
such combinations:

It is well known that all the steps of a proof may be reduced to combinations of
the two following elementary processes:

1. Inference: If the theorems p and p ⊃ q are known to be true, then we can
assert the proposition q.

2. Replacement: If the theorem φ(x) involving the free variable x is known to be
true, then we can assert the proposition φ(c) which arises from φ by replacing
x everywhere by some one symbol c. This symbol c may be a constant, a
variable, or a combination of constants and variables, but all its values must
be within the range of the variable x.

The actual steps taken in the course of most mathematical proofs are not single
instances of these two rules, but are rather complex combinations of them. [. . . ]
If mathematical logic is to be developed into a powerful method, it cannot content
itself with these two elementary operations alone, but it must advance to the
definition of their most important combinations. (Mac Lane, 1935, p. 122)

Most of Mac Lane’s dissertation was thus dedicated to the development of a formal machinery
aiming at analyzing those combinations, an enterprise nicely summarized by Mac Lane himself
in the following passage:

The thesis [. . . ] observes that long stretches of formal proofs (written, say, in
the style of Principia) are indeed trivial, and can be reconstructed by following
well-recognized general rules. The thesis develops standard metamathematical ter-
minology to describe formal expressions—as certain strings of symbols, suitably

5Mac Lane (1935) remarks that: “Classical mathematical logic has [. . . ] given a complete and adequate
description of the structure of mathematical theorems, but is has solved only the most elementary problems
connected with the structure of mathematical proof” (Mac Lane, 1935, p. 121).

6In his review of Mac Lane’s philosophy of mathematics, Colin McLarty points out that since his first en-
counter with foundational issues through the reading of Hausdorff’s 1914 monograph on set theory (Hausdorff,
1914): “Mac Lane has [. . . ] urged that logic should not merely study inference in principle, but the inferences
made daily by mathematicians” (McLarty, 2007, p. 89).
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arranged. This is followed by a meticulous description of what it means to substi-
tute y (or something more complex) for x in an expression. This description let
me state exactly what it would mean to determine that one expression is a special
case of another.

On this basis, I described exactly a number of the routine steps in a proof, giving
each a label, as for example:

Inf schrumpf : To prove a theorem L ⊃ P , search for a prior theorem
of the form M ⊃ N , where L is a “special case” of M and P the corre-
sponding special case of M .
Sub inf schrumpf : Given a prior theorem M ⊃ N , one can conclude
that L ⊃ L′, where L′ is obtained from L by replacing every “positive”
component of the form M by a new component N .
Sub Def : Substitute the definitions.
Identität : Use one of the standard identities of algebra (or of the propo-
sitional calculus).
Sub Theorem # 20.43 : Use the cited theorem, in the (only) possible
way.
x = C fixieren: Given a premise (∃x)L(x), assert L(C) for some suitable
“constant” C.
Halborn: Move a quantifier ∃x or ∀x to the front of an expression.

All told, the thesis gives twenty or twenty-five of such rules (listed at the start of
Chapter VII), and then observes that many proofs can be “abbreviated” by listing
in order the rules to be applied. In this sense, the thesis gives a formal definition
of a routine proof. (Mac Lane, 1979, p. 65)

The central idea of Mac Lane’s dissertation is thus to introduce what we shall call higher-
level rules of inference—what Mac Lane refers to as “general rules” in the previous quote.7

Those higher-level rules of inference correspond to specific combinations of the elementary
rules of inference of the formal deductive system one is considering. For each higher-level
rule of inference identified, Mac Lane specifies in his dissertation the specific combination it
corresponds to in terms of the rules and theorems of Principia Mathematica. This means
that to each higher-level rule of inference is associated an algorithmic procedure that makes
it possible to transform any application instance of the rule into a sequence of inferences
complying to the rules of the considered formal deductive system, for it suffices to replace it
by the combination of elementary rules of inference it corresponds to. It is with respect to
these algorithmic procedures that Mac Lane uses the term ‘routine’: a mathematical inference
is routine if it corresponds to an instance of a higher-level rule of inference for which there
exists an algorithmic procedure allowing to transform the given mathematical inference into
a sequence of applications of elementary rules of inference; a mathematical proof is routine if
it is composed of routine mathematical inferences.

In this way, Mac Lane offers a formal framework in which it is possible to represent any
given routine mathematical proof as a particular sequence of applications of higher-level rules
of inference. These higher-level rules of inference constitute thus a means to abbreviate or
condense formal proofs so as to obtain proof descriptions that come much closer to the way
routine mathematical proof are presented in ordinary mathematical practice:

7Some rules, such as Inf schrumpf, have a structure different from a traditional rule of inference, insofar as
they may encompass one or more search procedures.
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In summary, the thesis observed that many proofs in mathematics are essentially
routine—and that one can carefully write even a complete description of each type
of routine step, so that the formal proof of the theorem, written in detail, can be
replaced by the much shorter description of these steps. (Mac Lane, 1979, p. 66)

It is now easy to see why Mac Lane came to conceive of a rigorous mathematical proof
as one that can be routinely translated into a formal proof: insofar as he considers that the
(routine) mathematical inferences comprising a (routine) mathematical proof are all instances
of higher-level rules of inference, one can then appeal to their associated algorithmic procedures
to turn each (routine) mathematical inference into a sequence of inferences complying to the
elementary rules of inference of the formal deductive system under consideration, and thus
to translate the original (routine) mathematical proof into a formal proof. The procedure of
routine translation is thus entirely specified by the set of algorithmic procedures underlying
the higher-level rules of inference, and simply consists in replacing each application of a higher-
level rule of inference by the combination of elementary rules of inference it corresponds to.

2.2 Bourbaki on mathematical rigor

The mathematical text at the origin of the large-scale diffusion of the standard view within
the mathematical community is presumably Bourbaki’s Éléments de Mathématique, and more
specifically the first book of the treatise entitled Théorie des Ensembles (Bourbaki, 1970),
which contains most of Bourbaki’s considerations on rigor and foundational issues. The Bour-
baki’s quote reported at the beginning, and expressing the most common formulation of the
standard view, was indeed extracted from the second page of the introduction to the Théorie
des Ensembles. In order to understand this formulation of the standard view, we shall now
come back on the more general perspective undertaken by Bourbaki in the first book of the
Éléments de Mathématique.

For the purpose of the present discussion, it is important to first recall two of the main goals
of Bourbaki’s enterprise. First, Bourbaki aims to rebuild the whole edifice of mathematics in
the manner of Euclid’s Elements, that is, to establish each mathematical result deductively
using resources previously obtained in the treatise, which can be traced back ultimately to
a given set of primitive principles or axioms stated at the very beginning. Second, Bourbaki
aims to adopt a proof practice that could claim to the highest level of rigor attainable, and
which rests on a particular use of formalized languages. This second goal is discussed in the
very opening of the introduction to the Théorie des Ensembles, where it is first noticed that:

By analysis of the mechanism of proofs in suitably chosen mathematical texts, it
has been possible to discern the structure underlying both vocabulary and syntax.
This analysis has led to the conclusion that a sufficiently explicit mathematical text
could be expressed in a conventional language containing only a small number of
fixed “words”, assembled according to a syntax consisting of a small number of
unbreakable rules: such a text is said to be formalized. (Bourbaki, 1970, p. 7)

Although the mere possibility of formalizing existing mathematical texts does not necessarily
imply that ordinary mathematical practice should be directly concerned with formalized lan-
guages, Bourbaki argues that the “conscious practice” of the axiomatic method does require a
certain epistemological relation with formalized languages:

Just as the art of speaking a language correctly precedes the invention of gram-
mar, so the axiomatic method had been practised long before the invention of
formalized languages; but its conscious practice can rest only on the knowledge of
the general principles governing such languages and their relationship with current
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mathematical texts. In this Book our first object is to describe such a language,
together with an exposition of general principles which could be applied to many
other similar languages; however, one of these languages will always be sufficient
for our purposes. (Bourbaki, 1970, p. 9)

The issue of describing such a formalized language is, of course, directly connected to the other
goal of the Bourbaki’s enterprise mentioned above, namely to provide a general foundational
framework within which the whole of mathematics could be represented and deduced. As is
well-known, Bourbaki adopted as a foundational framework a (certain version of) the theory
of sets:8

For whereas in the past it was thought that every branch of mathematics depended
on its own particular intuitions which provided its concepts and prime truths,
nowadays it is known to be possible, logically speaking, to derive practically the
whole of known mathematics from a single source, the Theory of Sets. Thus it is
sufficient for our purposes to describe the principles of a single formalized language,
to indicate how the Theory of Sets could be written in this language, and then to
show how the various branches of mathematics, to the extent that we are concerned
with them in this series, fit into this framework. (Bourbaki, 1970, p. 9)

Bourbaki’s initial impulse was thus to rebuild the whole edifice of mathematics within a
foundational framework consisting of a formalized version of the theory of sets.

Of course, carrying out such a project faces some daunting practical difficulties. Bourbaki
acknowledges this, and put forwards some solutions to make the project feasible:

If formalized mathematics were as simple as the game of chess, then once our
chosen formalized language had been described there would remain only the task
of writing out our proofs in this language, just as the author of a chess manual
writes down in his notation the games he proposes to teach, accompanied by
commentaries as necessary. But the matter is far from being as simple as that,
and no great experience is necessary to perceive that such a project is absolutely
unrealizable: the tiniest proof at the beginning of the Theory of Sets would already
require several hundreds of signs for its complete formalization. Hence, from Book
I of this series onwards, it is imperative to condense the formalized text by the
introduction of a fairly large number of new words (called abbreviating symbols)
and additional rules of syntax (called deductive criteria). By doing this we obtain
languages which are much more manageable than the formalized language in its
strict sense. Any mathematician will agree that these condensed languages can be
considered as merely shorthand transcriptions of the original formalized language.
(Bourbaki, 1970, p. 10)

Bourbaki adopts thus a strategy for abbreviating or condensing formal proofs which is similar
to Mac Lane’s and which is based on the introduction of higher-level rules of inference called
deductive criteria.

In order to precisely state what deductive criteria are, we shall first recall a few technical
aspects of the foundational framework developed in the Théorie des Ensembles (Bourbaki,
1970). First of all, Bourbaki begins with the definition of a formalized language by introducing
an alphabet, defined as a set of signs, and by considering assemblies, which are sequences of
signs from the alphabet—what we now call ‘formulas’. Among the assemblies that are formed
according to a specified set of rules—what we now call ‘well-formed formulas’—Bourbaki

8For a discussion of Bourbaki’s theory of sets, see Anacona et al. (2014).
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distinguishes between the terms, which represent objects, and the relations, which represents
assertions (Bourbaki, 1970, p. 20). Bourbaki pursues by defining the notion of a demonstrative
text or proof in a theory T , which follows essentially the definition of a formal proof in a Hilbert
proof system (Bourbaki, 1970, p. 25). Bourbaki defines then the notion of a theorem in T as
a relation that appears in a proof in T (Bourbaki, 1970, p. 25).

We now have all the elements to state precisely what a deductive criterion is for Bourbaki:
a deductive criterion is a rule, that takes the form of a schema, and which states that if such
and such relations are theorems in a theory T , then another relation is also a theorem in T .
Two representative examples of deductive criteria are the followings:9

C1 (Syllogism). Let A and B be relations in a theory T . If A and A ⇒ B are
theorems in T , then B is a theorem in T . (Bourbaki, 1970, p. 25)

C61 (Principle of Induction). Let Rbnc be a relation in a theory T (where n is
not a constant of T ). Suppose that the relation

Rb0c and (∀n)((n is an integer and Rbnc)⇒ Rbn+ 1c)

is a theorem in T . Under these conditions the relation

(∀n)((n is an integer)⇒ Rbnc)

is a theorem in T . (Bourbaki, 1970, p. 168)

It is important to notice that a deductive criterion is a meta-theorem, and thereby requires a
proof in the meta-theory. Such deductive criteria correspond thus to what we call in modern
terminology ‘derived rules of inference’.

Thus, Bourbaki’s solution to abbreviate formal proofs is essentially the same as the one
proposed by Mac Lane, for it consists in introducing higher-level rules of inference—the de-
ductive criteria—which allows to abbreviate or condense formal proofs by writing them under
the form of lists of such higher-rules of inference together with their arguments. Such a strat-
egy, together with the use of abbreviating symbols and the so-called abus de langage, allows
to represent mathematical proofs within this formal framework in the way they are com-
monly presented in ordinary mathematical practice. Furthermore, the meta-mathematical
machinery developed by Bourbaki assures that, to every such condensed or abbreviated proof,
corresponds a formal proof or demonstrative text as defined in (Bourbaki, 1970, p. 25). These
two important points are expressed clearly in the following passages:

We shall therefore very quickly abandon formalized mathematics, but not before
we have carefully traced the path which leads back to it. The first “abuses of
language” thus introduced will allow us to write the rest of this series (and in
particular the Summary of Results of Book I) in the same way as all mathematical
texts are written in practice, that is to say partly in ordinary language and partly
in formulae which constitute partial, particular, and incomplete formalizations, the
best-known examples of which are the formulae of algebraic calculation. (Bourbaki,
1970, p. 11)

Thus, written in accordance with the axiomatic method and keeping always in
view, as it were on the horizon, the possibility of a complete formalization, our
series lays claim to perfect rigour: a claim which is not in the least contradicted
by the preceding considerations, nor by the need to correct errors which slip into
the text from time to time. (Bourbaki, 1970, p. 12)

9Bourbaki (1970) introduces in total 63 deductive criteria.
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It is now easy to understand the formulation of the standard view as expressed in the
Bourbaki’s quote reported in the introduction. From Bourbaki’s perspective, in order for the
mathematician to evaluate the correctness or rigor of a mathematical proof, it suffices for
him to verify that each mathematical inference in the mathematical proof corresponds to a
legitimate application of a higher-level rule of inference—i.e., a deductive criteria. The meta-
mathematical machinery developed in the Théorie des Ensembles allows then to give a precise
sense to the idea that the mathematician “is content to bring the exposition to a point where
his experience and mathematical flair tell him that translation into formal language would be
no more than an exercise of patience (though doubtless a very tedious one)” (Bourbaki, 1970,
p. 8): insofar as the validity of each higher-level rules of inference is established through a
meta-mathematical argument assuring that such rules preserve the notion of ‘theoremhood’
as defined by Bourbaki, one is ensured that if an ordinary mathematical proof can be written
under the form of a list of application of higher-rules of inference together with their arguments,
then there necessarily exists a formal proof corresponding to it which can be obtained by
replacing each such application by the sequence of inferences it abbreviates. Producing such
a formal proof is a task that is, however, beyond the reach of any human being.

2.3 Wrapping-up

Although Mac Lane and Bourbaki offered the first formulation of the standard view, their
primary objectives was not to provide a characterization of mathematical rigor as a quality
of mathematical proof, nor did they have the intention to promote a direct use of formal
proofs in ordinary mathematical practice. Their respective goals lay elsewhere: Mac Lane
aimed to develop a richer analysis of the structure of mathematical proofs within the field
of mathematical logic, while Bourbaki aimed to secure the foundations of his mathematical
treatise by developing a meta-mathematical machinery allowing to reach the highest-level
of rigor practically attainable by maintaining a certain epistemological relation between the
standards of formal proof and the way proofs are written in the treatise.

For these reasons, and as we have just seen, the standard view as expressed by Mac Lane
and Bourbaki is better conceived as a consequence of their respective enterprises. More specif-
ically, the view follows from two central tenets common to the general approaches adopted by
Mac Lane and Bourbaki towards their respective goals, namely:

1. Judgments of the validity of mathematical inferences in mathematical practice can be
conceived as relying on higher-level rules of inference that are generated from lower-level
rules of inference and propositions from background knowledge;

2. These higher-level rules of inference can ultimately be generated from the set of rules of
inference and axioms of a formal deductive system adequate to serve as the foundations
of mathematics.

The connection with mathematical practice is then to be found in the first tenet, which
contains a view on how mathematical inferences in mathematical proofs are judged to be valid
in mathematical practice, and which thereby presupposes a certain descriptive account of
mathematical rigor. Although all the elements of such an account are present in substance in
the work of Mac Lane and Bourbaki, those elements are embedded in technical developments,
making it hard to understand why Mac Lane and Bourbaki see in their works a descriptive
account of mathematical rigor, and a fortiori to identify what this account could consist in.

As we mentioned in the beginning, our first step in providing a precise formulation of the
standard view will be to specify the descriptive part of the standard view. This task amounts
then to reconstruct the descriptive account of mathematical rigor potentially present in the
work of Mac Lane and Bourbaki. Before we can do so, however, it will be useful to reflect on
what exactly is to be expected of a descriptive account of mathematical rigor.
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3 Preliminaries: How to formulate a descriptive account of
mathematical rigor

A descriptive account of mathematical rigor shall provide a characterization of the process
by which mathematical proofs are judged to be rigorous in mathematical practice, i.e., by
which the quality of being rigorous is attributed to mathematical proofs in mathematical
practice. We shall refer to this process as verification, and say that a mathematical proof has
been verified whenever it has successful undergone this verification process. Any descriptive
account of mathematical rigor shall then take the form of the following schema:

A mathematical proof P is rigorousM
⇔

P can be verified by a typical agent in mathematical practiceM, using the resources
commonly available to the agents engaged inM.

Since a mathematical proof is a composite entity consisting of a sequence of elementary steps
of deduction—as mentioned in the previous section, we shall refer to these elementary steps as
mathematical inferences—verifying a mathematical proof amounts to verifying all the math-
ematical inferences that comprise it. The previous schema becomes then:

A mathematical proof P is rigorousM
⇔

Every mathematical inference I in P can be verified by a typical agent in mathematical
practiceM, using the resources commonly available to the agents engaged inM.10

From this perspective, providing a characterization of mathematical rigor amounts to identi-
fying the process by which mathematical inferences are verified—i.e., judged to be valid—in
mathematical practice. At this stage, we can refine further the above schema by observing
that, when faced with the task of verifying a mathematical inference in a mathematical proof,
a typical agent is often led to introduce intermediate steps of deduction between the premisses
and the conclusion. This is a very common and banal observation, one which is for instance
described by Yehuda Rav in the following passage:

In reading a paper or monograph it often happens—as everyone knows too well—
that one arrives at an impasse, not seeing why a certain claim B is to follow from
claim A, as its author affirms. [. . . ] Thus, in trying to understand the author’s
claim, one picks up paper and pencil and tries to fill in the gaps. After some
reflection on the background theory, the meaning of the terms and using one’s
general knowledge of the topic, including eventually some symbol manipulation,
on sees a path from A to A1, from A1 to A2, . . . , and finally from An to B. (Rav,
1999, p. 14)

To integrate this aspect, we introduce the notion of immediate mathematical inference: a
mathematical inference is immediate for a given agent if she can evaluate it as valid with-
out introducing intermediate steps of deduction. This suggests to decompose the process of
verifying a mathematical inference into two phases: the first phase consisting in decomposing
the mathematical inference into a sequence of immediate mathematical inferences; the second

10It is assumed here that all the premisses involved in the mathematical inferences of P are legitimate, that
is, they are either conclusions of previous inferences, mathematical propositions from background knowledge,
or assumptions to be discharged later on in P . If a premiss does not fall into one of these three categories,
then it should be considered as the conclusion of a mathematical inference.
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phase consisting in verifying each immediate mathematical inference in the sequence.11 With
respect to a mathematical practice M, if we denote by DM the set of processes available to
the agent to decompose a mathematical inference into a sequence of immediate mathemati-
cal inferences, and by VM the set of processes available to the agent to evaluate immediate
mathematical inferences, we obtain the following schema:

A mathematical proof P is rigorousM
⇔

For every mathematical inference I in P , there exist12 D ∈ DM and V1, . . . , Vn ∈ VM such
that (1) D(I) = 〈I1, . . . , In〉 and (2) Vi(Ii) = valid for all i ∈ J1, nK.

We shall refer to this schema as the DV schema, and to DM and VM as the sets of decompo-
sition and verification processes.

It is my contention that any descriptive account of mathematical rigor shall take the form
of a specification of the DV schema, i.e., of a specification of the sets of decomposition and
verification processes. In order to specify the descriptive part of the standard view, we shall, in
the next section, specify the DV schema associated to it, i.e., identify the sets of decomposition
and verification processes associated to the standard view.

4 The standard view of mathematical rigor: Descriptive part

We are now in a position to specify the descriptive part of the standard view, i.e., to provide a
precise formulation of the descriptive account of mathematical rigor embedded in the standard
view—in the terminology introduced at the beginning, this amounts to characterize what it
means for a mathematical proof to be rigorousD. As we have just seen, any descriptive account
of mathematical rigor shall take the form of a specification of the DV schema. To specify the
descriptive part of the standard view amounts then to specify the DV schema associated to
it, a schema that takes the following form:

A mathematical proof P is rigorousD
⇔

For every mathematical inference I in P , there exist D ∈ D? and V1, . . . , Vn ∈ V? such that
(1) D(I) = 〈I1, . . . , In〉 and (2) Vi(Ii) = valid for all i ∈ J1, nK.13

where D? and V? correspond to the sets of decomposition processes and verification processes
associated to the standard view. As we noted in section 2, although Mac Lane and Bourbaki
seem to see in their works a descriptive account of mathematical rigor, this account is nowhere
made explicit as such. Our task in this section will be to reconstruct this account, by specifying
the sets of processes D? and V?, and this based on the core elements of the standard view as
originally conceived by Mac Lane and Bourbaki.

11It should be noted that, in practice, an additional process is usually preceding these two phases in the veri-
fication of a mathematical inference, which consists in identifying the premisses of the considered mathematical
inference. This process is necessary insofar as in written mathematical proofs, premisses of mathematical in-
ferences are sometimes left implicit, in which case it is left to the agent to recover them. Although this process
of premiss identification is essential to the verification of mathematical inferences in mathematical proofs, we
shall not attempt to analyze it further since it is not directly connected to the issues we are primarily concerned
with. Throughout this paper, we shall thus assume that, whenever an agent is engaging into the verification
of a mathematical inference, she has previously identified all its relevant premisses.

12There is here a computational content in the phrase ‘there exist’, for we shall assume that, if there exist
such D ∈ DM and V1, . . . , Vn ∈ VM, a typical agent engaged in M should be able to identify them.

13For readability reasons, we will omit from now on references to the considered mathematical practice M.
One should nonetheless keep in mind that the sets D? and V?, as well as the quality of being rigorousD, are
always relative to a given mathematical practice M.
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4.1 The set of decomposition processes D?

A decomposition process is called for whenever a mathematical agent encounters a mathemat-
ical inference in a mathematical proof that she cannot judge to be valid without introducing
intermediate steps of deduction between the premisses and the conclusion. As an illustration
of this phenomenon, consider, for instance, the following mathematical proof of the irrational-
ity of

√
2 taken from the fourth edition of Hardy and Wright’s An Introduction to the Theory

of Numbers (Hardy and Wright, 1975, pp. 39–40):

Theorem (Pythagoras’ Theorem).
√

2 is irrational.

Proof. The traditional proof ascribed to Pythagoras runs as follows. If
√

2 is
rational, then the equation

a2 = 2b2

is soluble in integers a, b with (a, b) = 1. Hence a2 is even, and therefore a is even.
If a = 2c, then 4c2 = 2b2, 2c2 = b2, and b is also even, contrary to the hypothesis
that (a, b) = 1.

For the beginning college student in number theory following Hardy and Wright’s book, many
mathematical inferences in this proof will appear immediate, insofar as they concern elemen-
tary properties of the natural numbers which are normally already known from high-school
mathematics. However, one mathematical inference might not appear so immediate, namely
the one with premiss “a2 is even” and conclusion “a is even”. In this case, the student will
engage into a decomposition process in order to introduce intermediate steps of deduction
between the premiss and the conclusion, that is, a sequence of immediate mathematical in-
ferences which will allow her to verify that the conclusion “a is even” indeed follows from the
premiss “a2 is even”. As we already saw, this phenomenon of ‘filling in the details’ is almost
always present when a mathematical agent is verifying a mathematical proof.

What is the nature of these decomposition processes? First of all, notice that we can
represent any mathematical inference in a mathematical proof in the following way:

P1, . . . , Pn ⇒ C

where P1, . . . , Pn are the premisses of the inference, and C its conclusion. As remarked by
Avigad (2008, p. 333), whenever a mathematical agent cannot verify immediately a mathe-
matical inference of the form P1, . . . , Pn ⇒ C, she is facing a situation identical to the one
of proving the mathematical proposition “if P1, . . . , Pn, then C”. In the above example, the
student not able to verify the mathematical inference with premiss “a2 is even” and conclusion
“a is even” is then facing the task of proving the mathematical proposition “if a2 is even,
then a is even”. It follows that the decomposition process required to turn the mathematical
inference P1, . . . , Pn ⇒ C into a sequence of immediate mathematical inferences is identical to
the proof search process required to prove the mathematical proposition “if P1, . . . , Pn, then
C”. Decomposition processes are therefore proof search processes.

There are, however, restrictions on which proof search processes can be admitted as de-
composition processes. Such restrictions are necessary to avoid that mathematical proofs that
are patently underdeveloped be counted as rigorous by our characterization—e.g., if a certain
mathematical inference in a mathematical proof corresponds to the application of a lemma
that would take a few days to prove by a typical mathematical agent, we would not want this
mathematical proof to qualify as rigorous. These restrictions correspond to the conditions un-
der which it is considered admissible to leave what Fallis (2003) has called enthymematic gaps
in written mathematical proofs. According to Fallis, the main reason why mathematicians
leave enthymematic gaps in written mathematical proofs is to facilitate communication:
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The point of publishing a proof in a journal or presenting it at a conference is to
communicate that proof to other mathematicians. [. . . ] Somewhat surprisingly,
the most efficient way for the mathematician to do this is not by laying out the
entire sequence of propositions in excruciating detail. Instead, the mathematician
just tries to include “sufficient information so that the informed reader (or hearer)
could reconstruct a perfect proof from the enthymeme” (Lehman, 1980, p. 35).
[. . . ] His readers can simply “fill in the missing assumptions from the common
store of background knowledge” (Lehman, 1980, p. 36). (Fallis, 2003, p. 55)14

Based on the constraints for leaving enthymematic gaps in written mathematical proofs, we
can identify two conditions for a proof search process to count as a decomposition process.
First, the proof search process should be part of the common background knowledge of the
mathematical agents engaged in the considered mathematical practice, so that the agent
leaving an enthymematic gap in a mathematical proof is assured that the gap can be filled in by
her peers. Second, the proof search process should be susceptible to fill in the enthymematic
gap in a ‘reasonable amount of time’, otherwise the mathematical proof would contain an
inadmissible gap that should be eliminated by providing additional intermediate steps of
deduction, in which case the proof should not be counted as rigorous. This leads to the
following specification of the set of decomposition processes D?:

The set of decomposition processes D? is given by the set of proof search processes
which are (1) part of the common background knowledge of the agents engaged in
mathematical practiceM and (2) susceptible to prove mathematical propositions
in a reasonable amount of time.

It should be noted that this specification of D? is independent of the specifics of the standard
view, and is very likely to be part of any characterization of rigor as a quality of mathematical
proofs. The heart of the standard view is rather to be found in the set of verification processes
V? that we now turn to.

4.2 The set of verification processes V?

On pain of infinite regress, the process of decomposition that the agent is engaged in while
evaluating the validity of a mathematical inference must stop at some point. This happens
precisely when the agent reaches immediate mathematical inferences, that is, inferences that
can be judged to be valid without decomposing them into further mathematical inferences.
We shall now say how immediate mathematical inferences are judged to be valid according to
the standard view, that is, we shall specify the set of verification processes V?.

As we saw in section 2, the solution put forward by Mac Lane and Bourbaki rests on the
introduction of higher-level rules of inference (henceforth, hl-rules). In our reconstruction, a
hl-rule is entirely determined by its inference schema, which is a pair composed of a premiss
schema and a conclusion schema consisting respectively of a set of schemas for the premisses
and a schema for the conclusion. Here, a schema is a template or pattern composed of
placeholders and of symbols from the vocabulary of the language of the mathematical practice
M, together with some specifications on how the placeholders are to be filled in to generate
mathematical propositions in the language ofM, propositions which are then called instances

14A similar statement is made by Bourbaki: “Sometimes we shall use ordinary language more loosely, by
voluntary abuses of language, by the pure and simple omission of passages which the reader can safely be
assumed to be able to restore easily for himself, and by indications which cannot be translated into formalized
language and which are designed to help the reader to reconstruct the complete text” (Bourbaki, 1970, p. 11).
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of the schema.15 As an illustration, the inference schema for modus ponens is given by:

P, P → Q ⇒ Q

where P and Q are placeholders for mathematical propositions, while the inference schema
for mathematical induction can be given by:16

H(0), H(X)→ H(X + 1) ⇒ H(Y )

where H is a placeholder for an expression involving an arbitrary variable ranging over N, and
X and Y are placeholders for arbitrary variables ranging over N. We shall then say that an
immediate mathematical inference is valid whenever it corresponds to an instance of a hl-rule.
This means that to each hl-rule R is associated a verification process VR defined by:17

VR(I) = valid ⇔ I is an instance of the hl-rule R.

The set of verification processes V? associated to the standard view is thus composed of all the
verification processes associated to the hl-rules that the typical agent engaged in mathematical
practiceM possesses.

Characterizing the set V? amounts then to specifying the set of hl-rules that a typical agent
engaged inM possesses. To this end, our proposal is to characterize V? as the set of hl-rules
that a typical agent inM has acquired in the course of the common training she received in
order to qualify as a proper member of M. Our approach will then consist in providing a
simple, idealized model of such a training—that we shall refer to as the training model—and
in characterizing the set of verification processes V? as the set of hl-rules the agent possesses
once her training has been completed.

In the training model, we shall represent the situation of the agent at time t of her training
by the pair (Kt,Rt) where Kt is the set of mathematical propositions representing the math-
ematical knowledge that the agent possesses at time t, and Rt is the set of hl-rules that the
agent possesses at time t. The initial situation of the agent—at the beginning of her training—
is represented by the pair (K0,R0), while the final situation of the agent—once her training
has been completed—is represented by the pair (KT,RT), the set of verification processes V?
being then given by the set of hl-rules RT. In order to complete the description of the training
model, we now need to specify (1) the initial situation (K0,R0), and (2) the processes by which
Kt and Rt can be augmented, i.e., how the agent passes from (Kt,Rt) to (Kt+1,Rt+1).

The initial situation (K0,R0) corresponds to the ordinary situation that any mathematical
student finds herself at the beginning of her training in mathematical practiceM. K0 is the
set of mathematical propositions that the agent is accepting without proof at the beginning
of her training. To figure out what K0 is for a given mathematical practice, it suffices to
identify the various mathematical propositions that the student is required to accept without
proof, a task that can be carried out concretely by simply looking at some of the typical
textbooks in the considered mathematical practice. For instance, the mathematical student
taking an introductory course in number theory at the university level is typically required to

15More generally, Corcoran (2014) defines a schema as consisting of two things: (1) a template-text or
schema-template which is “a syntactic string composed of significant words and/or symbols and also of blanks
or other placeholders”, and (2) a side condition which specifies “how the blanks (placeholders, variables or
ellipses) are to be filled to obtain instances”. Notice that our notion of inference schema corresponds exactly
to what Corcoran (2014) calls an argument-text schema.

16There are different ways one could model the hl-rule corresponding to mathematical induction in mathe-
matical practice. One could, for instance, add universal quantifiers for the second premiss, or for the conclusion,
or both.

17In the following, we shall often identify a hl-rule with its associated verification process, and talk freely of
hl-rules as verification processes.
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accept without proof some informal versions of the Peano axioms, some basic propositions of
naive set theory, and maybe various elementary properties of the natural numbers known from
elementary school and high-school mathematics. Sometimes, one witnesses some variations
with respect to the set of propositions that the student is required to accept at the outset. A
typical example is given by trainings in mathematical analysis, where some textbooks might
require the student to accept without proof all the elementary properties of N, Q, R, and C,
while others might only require to accept the Peano axioms, and establish all such elementary
properties through proofs (e.g., Landau, 1930). Modulo such variations, it is, nevertheless,
relatively easy to identify the mathematical propositions that are accepted without proof in
a typical training in mathematical practice M, and this is what the set of mathematical
propositions K0 represents. We shall refer to K0 as the sets of primitive axioms of the agent.

R0 is the set of rules of inference that the agent is equipped with at the beginning of
her training. Usually, the set of rules of inference R0 that the agent is allowed to use from
the start of her training is not made explicit in the course of a mathematical training, but
is rather considered to be a form of know-how that the learning agent is supposed to grasp
by observing and mimicking her trainer’s proof practice, and by practicing it herself through
exercises that are in turn criticized and corrected by the trainer. Some textbook authors,
however, do take specific care of providing an explicit training in the practice of mathematical
proofs. For instance, Rosen (2012) dedicates a whole chapter of his book to teach the basics
of mathematical proofs, while other have written entire books aiming to teach specifically the
writing and reading of mathematical proofs (see, e.g., Velleman, 2006; Solow, 2014; Chartrand
et al., 2018). It is not hard, however, to identify the rules of inference that an agent is
required to accept at the beginning of her training for those are essentially basic rules of
elementary logical reasoning necessary to reason with mathematical propositions, that is,
rules of inference for reasoning with the various propositional connectives, as well as rules
of inference for reasoning with quantified mathematical propositions, together with various
combinations of those. We shall refer to R0 as the sets of primitive rules of inference of the
agent.

We shall now say how the set of mathematical propositions Kt that the agent possesses at
time t can be augmented. This is straightforward:

Whenever an agent in situation (Kt,Rt) at time t has derived a mathematical
proposition C from a set of mathematical propositions P1, . . . , Pn ∈ Kt through
a sequence of applications of hl-rules from Rt, and by eventually using additional
mathematical propositions from Kt, she is entitled to add C to her set of mathe-
matical propositions Kt.

If the agent chooses to do so, she is then brought in a situation at time t + 1 in which
Kt+1 := Kt ∪ {C}. We shall then say that the agent has acquired a proof certificate for C.
Furthermore, the agent can always add a definition to the set Kt at any time t.

Finally, it remains to say how the set of hl-rules Rt that the agent possesses at time t can
be augmented. Mac Lane (1935) has a simple answer to this issue, which is expressed in the
following passage:

In general, whenever a group of elementary processes of proof occurs repeatedly
in the course of many proofs, it is desirable to formulate this group of steps once
for all as a new process. Much of the ordinary education in mathematics consists
in training students to recognize such processes at a glance, and as whole, rather
than as composite. (Mac Lane, 1935, p. 123)

In the terminology introduced in this section, Mac Lane’s solution of how a new hl-rule can
be added to Rt at time t can be formulated as follows:
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Whenever an agent in situation (Kt,Rt) at time t has derived a mathematical
proposition C from a set of mathematical propositions P1, . . . , Pn through a se-
quence of applications of hl-rules from Rt, and by eventually using additional
mathematical propositions from Kt, she is entitled to add to her set of hl-rules Rt

the new rule:
P1, . . . ,Pn ⇒ C

where P1, . . . ,Pn,C correspond to the mathematical propositions P1, . . . , Pn, C in
which the free variables x1, . . . , xk occurring in them are replaced by the place-
holders X1, . . . , Xk of the same type.

If the agent chooses to do so, she is then brought in a situation at time t + 1 in which
Rt+1 := Rt ∪ {P1, . . . ,Pn ⇒ C}. We shall then say that the agent has acquired a rule
certificate for the new rule P1, . . . ,Pn ⇒ C.

It is interesting to observe that, through this process, many theorems and definitions can
easily be turned into hl-rules.18 As an illustration, consider again the mathematical inference
with premiss “a2 is even” and conclusion “a is even” from Hardy and Wright’s proof, and
imagine now that the authors would have established the following lemma prior to presenting
the proof of the irrationality of

√
2:

∀n (n2 is even→ n is even) (L)

If the agent at time t is such that L ∈ Kt, then she can turn L into a hl-rule by first deriving
the conclusion “x is even” from the premiss “x2 is even” in the following way:

P x2 is even

I1 x2 is even → x is even ∀-elimination from L

C x is even modus ponens from I1

and then adding the following hl-rule to Rt:

X2 is even ⇒ X is even

where X is a placeholder for an expression denoting a natural number. If the agent would
possess the above hl-rule, she will then be in a situation to recognize the mathematical inference
with premiss “a2 is even” and conclusion “a is even” as immediately valid, for this mathematical
inference is an instance of the above rule.

Similarly, a definition such as the following definition of even number:

∀n (n is even↔ ∃k such that n = 2k) (D)

can be turned into a hl-rule by first deriving the conclusion “x = 2y” from “x is even” in the
following way:

P x is even

I1 x is even → ∃k such that x = 2k ∀-elimination from D
I2 ∃k such that x = 2k modus ponens from P and I1

C x = 2y ∃-elimination from I2

18For a recent technical implementation of this idea, see the deductive system proposed by Sieg and Walsh
(2018) in their ‘natural formalization’ of the Cantor-Bernstein Theorem (Sieg and Walsh, 2018, sec. 3).
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and then adding the following hl-rule to Rt:

X is even ⇒ X = 2Y

where X and Y are placeholders for expressions denoting natural numbers. If the agent would
possess the above rule, she will then be in a situation to recognize as immediately valid the
mathematical inference with premiss “a is even” and conclusion “a = 2c”.

To sum up, the set of verification processes V? is given by the set of hl-rules that a
typical agent inM has acquired in the course of her training inM. The training model just
developed provides then the necessary elements to entirely characterize the set of verification
processes V?.

4.3 Concluding remarks

By providing a full specification of the sets of processes D? and V?, we have specified en-
tirely the DV schema associated to the standard view, and we have thereby reached a precise
formulation of the descriptive part of the standard view. It is important to stress that the
descriptive account of mathematical rigor embedded in the standard view does not appeal
either to the notion of formal proof, or to the one of routine translation. As a consequence,
one can perfectly endorse this descriptive account, without endorsing the standard view, i.e.,
without endorsing either the normative part of the standard view, or the conformity thesis.
Furthermore, the specifications of the sets of processes D? and V? being themselves indepen-
dent from each other, one can accept either of these two components while rejecting the other.
This means that this descriptive account of mathematical rigor can thus be considered by
itself, independently from its role and presence in the standard view of mathematical rigor,
and is as such of independent value and interest.

5 The standard view of mathematical rigor: Normative part

We shall now specify the normative part of the standard view, i.e., characterize what it means
for a mathematical proof to be rigorousN . As stated in the introduction:

A mathematical proof P is rigorousN
⇔

P can be routinely translated into a formal proof.

Our main task in this section will be to specify this characterization by providing a precise
conception of the notion of routine translation central to it. This raises two main questions:
How does the translation proceed? How should the term routine be interpreted?

Regarding the first question, our proposal is to think of the routine translation as a sequence
of successive translations between proofs at different levels of granularity. More specifically,
we will consider four levels of granularity, and will conceive of the routine translation as a
sequence of three successive translations from the coarsest to the finest level of granularity.
Regarding the second question, we shall interpret the term ‘routine’ as being equivalent to the
term ‘algorithmic’ (or ‘mechanical’, ‘automatic’), which is, I contend, the intended meaning
of the term in Mac Lane’s and Bourbaki’s original conceptions of the standard view. Thus,
we shall conceive of the routine translation as an algorithmic procedure that takes as input
an ordinary mathematical proof and turns it into a full formal proof, and we shall specify
it by providing the algorithmic procedures corresponding to the three successive translations
composing it.
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5.1 Four levels of granularity

The routine translation takes as input mathematical proofs as commonly presented in the
ordinary mathematical texts of a given mathematical practice. This is the coarsest level of
granularity we shall consider, and we shall refer to it as the vernacular level :

Vernacular level: A vernacular-level proof P is a sequence of inferences as commonly pre-
sented in the ordinary mathematical texts of mathematical practiceM.

As we saw in section 3, the inferences of a vernacular-level proof cannot always be directly
verified by a typical agent in a given mathematical practice, in which case the agent enters into
some decomposition processes in order to turn every such inference in the proof into a sequence
of immediate inferences. The second level of granularity we shall consider is the one at which
a proof is only composed of immediate inferences, and every mathematical proposition used
as a premiss is either the conclusion of a previous inference, a mathematical proposition from
background knowledge, or an assumption to be discharged later on, a level of granularity we
shall refer to as the higher level :

Higher level: A higher-level proof Phl is a sequence of inferences such that (1) every inference
in Phl is an instance of an hl-rule in RT, and (2) every mathematical proposition occurring
as a premiss of an inference in Phl is either the conclusion of a previous inference in Phl, a
mathematical proposition from KT, or an assumption to be discharged later on in Phl.19

In the previous section, we characterized immediate inferences as corresponding to in-
stances of higher-level rules of inference, and we explained in the training model how higher-
level rules of inference can be generated from primitive rules of inference and axioms. The
third level of granularity is the one at which a proof is only composed of inferences licensed
by primitive rules of inference, and every mathematical proposition used as a premiss is either
the conclusion of a previous inference, a primitive axiom, or an assumption to be discharged
later on, a level of granularity we shall refer to as the intermediate level :

Intermediate level: An intermediate-level proof Pil is a sequence of inferences such that
(1) every inference in Pil is an instance of a primitive rule of inference in R0, and (2)
every mathematical proposition occurring as a premiss of an inference in Pil is either the
conclusion of a previous inference in Pil, a primitive axiom from K0, or an assumption
to be discharged later on in Pil.20

Finally, the last and finest level of granularity we shall consider is the one of formal proof—
which is the level of granularity at which proofs are yield by the routine translation—a level
we shall refer to as the lower level :

Lower level: A lower-level proof Pll is a sequence of inferences such that (1) every inference
in Pll is an instance of a rule of inference in RΓ, and (2) every mathematical proposition
occurring as a premiss of an inference in Pll is either the conclusion of a previous inference
in Pll, an axiom from KΓ, or an assumption to be discharged later on in Pll.

Here Γ designates a formal deductive system adequate to serve as the foundations of mathe-
matics, and RΓ and KΓ designate respectively the rules of inference and axioms of Γ.

19Recall that KT and RT refer respectively to the set of mathematical propositions that the agent knows and
the set of hl-rules that the agent possesses once she has completed her training in the considered mathematical
practice.

20Recall that K0 and R0 refer respectively to the set of mathematical propositions that the agent knows and
the set of hl-rules that the agent possesses at the very beginning of her training in the considered mathematical
practice.
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We shall then conceive of the routine translation as an algorithmic procedure that takes as
input a proof at the vernacular level, and yields as output a translation of it at the lower level,
and which consists in a sequence of three successive translations: first from the vernacular level
to the higher level, then from the higher level to the intermediate level, and finally from the
intermediate level to the lower level. We now turn to the specifications of the three algorithmic
procedures corresponding to these three translations.

5.2 Three successive translations

The first translation, from the vernacular level to the higher level, corresponds exactly to the
first phase of the process that a typical mathematical agent engages in when judging the rigor
of a mathematical proof, namely the decomposition of each inference in the proof that cannot
be verified directly into a sequence of immediate mathematical inferences. The algorithmic
procedure Tvl→hl corresponding to this translation consists thus, for each such inference, in
first identifying a decomposition process that would turn the inference into a sequence of
immediate inferences, then carrying out this decomposition process, and finally replacing the
inference in the proof by the outcome of the decomposition process:

Algorithmic procedure Tvl→hl: For each inference I in P which is not immediate, the al-
gorithmic procedure Tvl→hl proceeds in three steps:

1. It identifies a decomposition process D ∈ D? such that (1) D(I) = 〈I1, . . . , In〉 and
(2) there exist V1, . . . , Vn ∈ V? such that Vi(Ii) = valid for all i ∈ J1, nK,

2. It decomposes I into the sequence of inferences 〈I1, . . . , In〉 using the decomposition
process D,

3. It replaces I in P by the sequence of inferences 〈I1, . . . , In〉.

The second translation, from the higher level to the intermediate level, exploits the way
hl-rules in RT and mathematical propositions in KT are generated in the training model from
primitive rules of inference in R0 and primitive axioms in K0. The algorithmic procedure
Thl→il corresponding to this second translation consists then in keeping unpacking the hl-rules
and the mathematical propositions in the proof into the more basic components they were
built from, and this up to the point where only remain primitive rules of inference, primitive
axioms, and assumptions to be discharged, a procedure that can be described as follows:

Algorithmic procedure Thl→il: The algorithmic procedure Thl→il proceeds in two steps:

1. It keeps replacing each application of a hl-rule in Phl by the sequence of applications
of hl-rules in its rule certificate, and each mathematical proposition in Phl by the
sequence of applications of hl-rules in its proof certificate, until all inferences in Phl

are instances of primitive rules of inference from R0 and all mathematical proposi-
tions occurring as premisses of inferences in Phl are either definitions, conclusions
of previous inferences, primitive axioms from K0, or assumptions to be discharged,

2. It keeps replacing each occurrence of a defined expression in the mathematical
propositions of Phl by its definition, until all mathematical propositions in Phl only
contain primitive expressions from the language of K0, and then withdraw from Phl

all mathematical propositions that correspond to definitions.

The third translation, from the intermediate level to the lower level, is there to bridge the
gap between the primitive rules of inference and primitive axioms, and the rules of inference
and axioms of the formal deductive system Γ. The algorithmic procedure Til→ll corresponding
to this third translation can be described as follows:
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Algorithmic procedure Til→ll: The algorithmic procedure Til→ll proceeds in three steps:

1. It replaces each mathematical proposition in Pil by its translation into the formal
language of Γ where each primitive expression is replaced by its definition in Γ,

2. It replaces each occurrence in Pil of a primitive axiom from K0 by a proof of it in
Γ,

3. It replaces each application in Pil of a primitive rule of inference from R0 by a
corresponding sequence of applications of rules of inference in Γ.

Do we have any reason to believe that such an algorithmic procedure could exist? Regarding
step 1, although few attempts have been made to provide an explicit algorithmic procedure for
translating mathematical propositions in the vernacular mathematical language into formulas
of a formal language, there does not seem to be any obstacle present here that could prevent
to do so since, as Wiedijk (2008) remarks: “Writing text in a stylized formal language is easy”
(Wiedijk, 2008, p. 1414).21 Regarding step 2, that any primitive axiom from K0—i.e., any
mathematical proposition accepted without proof in the various branches of contemporary
mathematics—can be represented and proved within a formal deductive system adequate to
serve as the foundations of mathematics is something that is known at least since the beginning
of the twentieth century, as Hilbert wrote in 1920 with respect to Zermelo’s axiom system for
set theory:

The theory which results from the development of the consequences of this ax-
iom system encompasses all mathematical theories (like number theory, analysis,
geometry), in the sense that the relations which obtain between the objects of
these mathematical disciplines are represented in a perfectly corresponding way
by relations which obtain within a subdomain of Zermelo’s set theory. (Hilbert,
1920/2013, p. 292)

Regarding step 3, given that the set of primitive rules of inference R0 amounts to basic rules of
elementary logical reasoning, it ought to be possible to translate any application of these rules
into corresponding sequences of applications of rules of inference in RΓ, involving eventually
further formulas that could be derived in Γ.

But the best reason we have to believe that such an algorithmic procedure as Til→ll could
exist is that, in fact, procedures of this kind do exist. More specifically, the main proof
assistants currently used in the field of formal verification possess the necessary resources to
convert any intermediate-level proof Pil—where each mathematical proposition in Pil has been
replaced by its translation into the formal language of the considered proof assistant—into a
lower-level proof Pll within the formal deductive system they are built on, as Avigad notices:

To date, a substantial body of definitions and theorems from undergraduate math-
ematics has been formalized, and there are good libraries for elementary number
theory, real and complex analysis, point-set topology, measure-theoretic probabil-
ity, abstract algebra, Galois theory, and so on. (Avigad, 2018, p. 685)

Of course, one will need to supplement any intermediate-level proof Pil with further instructions
to obtain a proof script that can be verified by such proof assistants. But given that all that
is required for steps 2 and 3 of Til→ll is the ability to replace any primitive axiom from K0 by a

21According to Wiedijk (2008), it is for this reason that “it is not important to have proof assistants be able
to process existing mathematical texts” (Wiedijk, 2008, p. 1414). This might explain why few efforts have been
invested to develop technologies in order to translate vernacular mathematical language into formal ones, the
cost of doing so compared to the potential low gain that could result from it might simply not be worth the
effort.
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proof of it in Γ and any application of a primitive rule of inference in R0 into a corresponding
sequence of applications of rules of inference in Γ, it suffices to provide once and for all a
proof script that can verify any primitive axiom from K0 and that can turn any primitive
rule of inference in R0 into a rule of the considered system, in order to obtain an algorithmic
procedure able to carry out the steps 2 and 3 of Til→ll.

Having defined the algorithmic procedures Tvl→hl, Thl→il, and Til→ll, we now possess all the
elements to define precisely the notion of routine translation.

5.3 The routine translation

The routine translation22 is given by the algorithmic procedure RT consisting of the compo-
sition of the three algorithmic procedures Tvl→hl, Thl→il, and Til→ll, that is:

RT : P
Tvl→hl7−→ Phl

Thl→il7−→ Pil
Til→ll7−→ Pll or RT = Til→ll ◦ Thl→il ◦ Tvl→hl

This allows us to state precisely what it means to say that a mathematical proof P can be
routinely translated into a formal proof in terms of the capacity of the algorithmic procedure
RT to succeed in turning the mathematical proof P into a formal proof:23

P can be routinely translated into a formal proof
⇔

RT would succeed in translating P into a formal proof.

Insofar as RT is the composition of the three algorithmic procedure Tvl→hl, Thl→il, and Til→ll,
we can specify the second part of this equivalence further as follows:

RT would succeed in translating P into a formal proof
⇔

Tvl→hl would succeed in translating P into a higher-level proof Phl,
and Thl→il would succeed in translating Phl into an intermediate-level proof Pil,

and Til→ll would succeed in translating Pil into a lower-level proof Pll.

We thus obtain that:

P can be routinely translated into a formal proof
⇔

Tvl→hl would succeed in translating P into a higher-level proof Phl,
and Thl→il would succeed in translating Phl into an intermediate-level proof Pil,

and Til→ll would succeed in translating Pil into a lower-level proof Pll.

This completes our specification of the normative part of the standard view, that is, our
characterization of what it means for a mathematical proof P to be rigorousN . We can now
turn to the examination of the last component of the standard view: the conformity thesis.

22I am talking here about ‘the’ routine translation, but it would be better to talk about a family of routine
translations, as there could be many variations at the level of the three algorithmic procedures Tvl→hl, Thl→il,
and Til→ll. For instance, in the algorithmic procedure Tvl→hl, different choices could be made regarding the
decomposition processes used to decompose the various inferences under consideration, and of course the algo-
rithmic procedure Til→ll is entirely dependent on the formal deductive system Γ one is adopting. What matters
for the present discussion is the general structure of this routine translation, not its specific implementations.

23To say that a mathematical proof P can be routinely translated into a formal proof is an existential
statement, and should be interpreted as saying that there exists a routine translation able to turn P into a
formal proof. In this reconstruction of the normative part of the standard view, I am specifying this existential
statement by exhibiting the routine translation that, I think, the proponents of the standard view have in
mind.
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6 The standard view of mathematical rigor: Conformity thesis

The conformity thesis relates the descriptive part and the normative part of the standard
view, and states that, for any mathematical proof P :

P is rigorousD ⇒ P is rigorousN .

In this section, we will show that this implication holds for the accounts of what it means for a
mathematical proof P to be rigorousD and rigorousN developed in the two previous sections.

Let P be a mathematical proof and let us assume that P is rigorousD. We want to show
that P is rigorousN . To this end, we will argue that the successive application of the three
algorithmic procedures Tvl→hl, Thl→il, and Til→ll would succeed in turning P into a formal proof.

Since P is rigorousD, we have that for every mathematical inference I in P , there exist
D ∈ D? and V1, . . . , Vn ∈ V? such that (1) D(I) = 〈I1, . . . , In〉 and (2) Vi(Ii) = valid for
all i ∈ J1, nK, and furthermore that a typical agent in mathematical practice M would be
able to identify such decomposition processes for each I in P . It follows from this that
the first step of Tvl→hl would succeed in identifying suitable decomposition processes for all
the inferences in P that are not immediate, the second step would succeed in decomposing
these inferences into sequences of immediate inferences since decomposition processes are
algorithmic procedures, and finally the third step would succeed in replacing them in P by
their decompositions. Furthermore, the proof Phl yielded by Tvl→hl is indeed a higher-level
proof, since all its inferences are immediate, and all the premisses of its inferences are either
conclusions of previous inferences, mathematical propositions from background knowledge, or
assumptions to be discharged later on in Phl. Thus, Tvl→hl would succeed in translating P into
a higher-level proof Phl.

Since Phl is a higher-level proof, this means that Phl is a sequence of inferences such that (1)
every inference in Phl is an instance of an hl-rule in RT, and (2) every mathematical proposition
occurring as a premiss of an inference in Phl is either the conclusion of a previous inference in
Phl, a mathematical proposition from KT, or an assumption to be discharged later on in Phl.
Since P is rigorousD, the process by which the pair (RT,KT) is obtained is the one described
in the training model, and so we can replace each application of a hl-rule in Phl by the sequence
of applications of hl-rules in its rule certificate, and each mathematical proposition in Phl by
the sequence of applications of hl-rules in its proof certificate. In doing so, we obtain a proof
in which all inferences are instances of hl-rules from Rt and all mathematical propositions
occurring as premisses of inferences are either definitions, conclusions of previous inferences,
mathematical propositions from Kt, or assumptions to be discharged, and this for some t < T.
Such a process can be repeated up to a point where all inferences in the proof are instances of
primitive rules of inference from R0 and all mathematical propositions occurring as premisses
of inferences are either definitions, conclusions of previous inferences, primitive axioms from
K0, or assumptions to be discharged. Furthermore, since this process would consist of at most
T iterations, we are assured that it will terminate. It follows from this that the first step
of Thl→il would succeed. In the proof resulting from this first step, we can then replace each
occurrence of a defined expression in the mathematical propositions of the resulting proof by
its definition, and repeat this process until all mathematical propositions in the proof only
contain primitive expressions from the language of K0. We can finally withdraw from the proof
all mathematical propositions that correspond to definitions, for all these definitions would
have been turned into tautologies by the process just described. The proof Phl yielded by Thl→il

is then an intermediate-level proof, since all its inferences are instances of primitive rules of
inference, and all the premisses of its inferences are either conclusions of previous inferences
or primitive axioms. Thus, Thl→il would succeed in translating Phl into an intermediate-level
proof Pil.
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Since Pil is an intermediate-level proof, this means that Pil is a sequence of inferences such
that (1) every inference in Pil is an instance of a primitive rule of inference in R0, and (2) every
mathematical proposition occurring as a premiss of an inference in Pil is either the conclusion
of a previous inference in Pil, a primitive axiom from K0, or an assumption to be discharged
later on in Pil. We have already argued in the previous section that one could specify the
algorithmic procedure Til→ll in such a way that it would be able to turn any intermediate-level
proof Pil into a lower-level proof Pll. It follows from this that such a specified algorithmic
procedure Til→ll would succeed in translating Pil into a lower-level proof Pll.

We have argued that Tvl→hl would succeed in translating P into a higher-level proof Phl,
that Thl→il would succeed in translating Phl into an intermediate-level proof Pil, and that
Til→ll would succeed in translating Pil into a lower-level proof Pll. This means that RT would
succeed in translating P into a formal proof, and that P can be routinely translated into a
formal proof. We have thus shown that, for any mathematical proof P , P is rigorousD ⇒ P
is rigorousN , namely that the conformity thesis holds for the accounts of what it means for a
mathematical proof P to be rigorousD and rigorousN developed in the two previous sections.

This completes our reconstruction of the standard view of mathematical rigor, thus pro-
viding us with a precise formulation of it. We are now in a position to engage in a thorough
evaluation of the standard view, a task that we will undertake in the two following sections
by examining, in turn, the arguments against and in favor of it.

7 The arguments against the standard view

The standard view has been heavily criticized in the literature. In this section, we will ex-
amine the main arguments that have been advanced against the standard view in light of the
formulation of it proposed in the three previous sections.

One of the first rejections of the standard view comes from John A. Robinson who, after
having restated the standard view in its common form, wrote the following:

This explanation of the rigorousness of rigorous unformalized proofs amounts to
saying that informal proofs really are, so to speak, no more than sketches or outlines
of formal proofs. But on closer examination this view seems unsatisfactory, and is
rejected by most mathematicians.

In actual mathematical work, formal proofs are rarely if ever used. Moreover,
the unformalized proofs which are the common currency of real mathematics are
judged to be rigorous (or not) directly, on the basis of criteria which are intuitive
and semantic—not simply based on syntactic form alone. Although construction
of a corresponding formal proof is rarely in practice undertaken, one sometimes
attempts it anyway, if only for the sake of the exercise, or perhaps for the sake
of submitting it to a computer proof-checking system. Formalization of a given
informal proof then often turns out to be surprisingly difficult. The translation
from informal to formal is by no means merely a matter of routine. In most
cases it requires considerable ingenuity, and has the feel of a fresh and separate
mathematical problem in itself. In some cases the formalization is so elusive as to
seem to be impossible. (Robinson, 1997, p. 54)

In this passage, Robinson advances three reasons to reject the standard view. First, he notices
that formal proofs are rarely used in ordinary mathematical practice. To my knowledge, no
ones has ever contested this, and the standard view does not say or imply that mathematicians
are or ought to use formal proofs in practice, so this does not constitute a reason to reject it.

Second, Robinson claims that judgments of the rigor of ordinary mathematical proofs are
based, in practice, on ‘intuitive’ and ‘semantic’ criteria, and not only on ‘syntactic’ ones. For
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this to constitute a reason to reject the standard view, one would need to (1) define what
is meant by the properties of being ‘intuitive’ and ‘semantic’, (2) provide an argument that
judgments of rigor in practice are based on criteria that have these properties, and (3) explain
why this would prevent the conformity thesis from holding, that is, why if a mathematical proof
is judged to be rigorous based on ‘intuitive’ and ‘semantic’ criteria, it might not or could not
meet the normative requirement that it be routinely translatable into a formal proof. Fleshing
out these three points is a necessary condition for this to constitute a potential reason to reject
the standard view.

The third reason is the most interesting one. It can be reformulated as follows: (P1) the
standard view says that if a mathematical proof is rigorous, then it can be routinely translated
into a formal proof, but (P2) when one tries to carry out concretely such a translation, this
turns out to be “surprisingly difficult” and “by no means merely a matter of routine”, so this
means that (C) there is something problematic with the implication in P1. This argument,
however, rests on a confusion on what the term ‘routine’ means. One can distinguish at least
two senses in which a process could be qualified as routine: in the first sense, a process is
routine if it consists in an algorithmic procedure, in which case routine is synonymous with
the terms ‘algorithmic’ or ‘mechanical’; in the second sense, a process is routine if performing
it does not present any difficulty. In the above passage, Robinson uses the term routine in the
second sense, as witnessed by his juxtaposition of the ideas that translation from informal to
formal is “surprisingly difficult” and “by no means merely a matter of routine”. If the term
‘routine’ in P1 and P2 is interpreted in the second sense, then the conclusion of the argument
indeed holds. But the intended meaning of the term ‘routine’ as it appear in the standard
view, and so as it appears in P1, is that of the first sense, not the second one, as we established
in section 5. If we interpret the term ‘routine’ in P1 and P2 respectively in the first and second
sense, then we have that P1 and P2 holds but that C does not follow from them. The reason
is that a process can be routine in the first sense but not in the second one. To see this, it
suffices to think of any particularly complicated algorithm which would be particularly hard to
perform, such as the one used in the proof of the four color theorem. Indeed, this is precisely
how Bourbaki sees the matter with respect to the process of routine translation when he says
that the mathematician is “content to bring the exposition to a point where his experience
and mathematical flair tell him that translation into formal language would be no more than
an exercise of patience (though doubtless a very tedious one)” (Bourbaki, 1970, p. 8), for he
recognizes that although such a translation “would be no more than an exercise of patience”—
which is the case of any algorithmic procedure—carrying it out concretely would turn out to
be “very tedious”.

In a review of contemporary philosophical developments on the nature and significance of
mathematical proofs, Detlefsen addresses the issue of the relation between rigor and formal-
ization, and provides the following argument against the standard view:

Mathematical proofs are not commonly formalized, either at the time they’re pre-
sented or afterwards. Neither are they generally presented in a way that makes
their formalizations either apparent or routine. This notwithstanding, they are
commonly presented in a way that does make their rigor clear—if not at the start,
then at least by the time they’re widely circulated among peers and/or students.
There are thus indications that rigor and formalization are independent concerns.

This is not the common view, however. On that view, non-formalized proofs are
typically close enough to formalized proofs to make the fact of formalizability clear
and the remaining work of formalization routine. (Detlefsen, 2009, p. 17)

This argument has the following structure: (P1) mathematical proofs are not “presented in a
way that makes their formalizations either apparent or routine”, but (P2) they are “presented
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in a way that does make their rigor clear”, so (C) “rigor and formalization are independent
concerns”. One can identify three issues with this argument.

First, the argument presupposes a reading of the standard view as providing a descriptive
account of mathematical rigor. According to this interpretation, what the standard view is
saying is that judging whether a mathematical proof is rigorous amounts to judging whether
it can be formalized, that is, whether it can be translated into a formal proof. If one adopts
such a descriptive reading, then the argument does provide a reason to reject the standard
view, for if the rigor of a mathematical proof can be judged from an ordinary presentation
of it while its formalizability cannot, then surely judging a mathematical proof as rigorous
cannot be based on a judgment of its formalizability. However, as we mentioned at the
beginning, the standard view cannot be meaningfully read as providing a descriptive account
of mathematical rigor, and as we can see from our reconstruction, the standard view does not
require that mathematical agents be able to judge directly from an ordinary presentation of
a mathematical proof whether it can be formalized. Indeed, Bourbaki himself recognizes that
“the tiniest proof at the beginning of the Theory of Sets would already require several hundreds
of signs for its complete formalization”, so it is hard to see how, under these conditions, he
could hold a view requiring that mathematical agents be able to judge the formalizability of
mathematical proofs directly from their presentations.

Second, the argument interprets the term ‘routine’ as being synonymous to the terms
‘apparent’ or ‘clear’. This is not, however, the intended interpretation of the term as it appears
in the standard view. Rather, as we saw in the previous sections, the term ‘routine’ should
be interpreted as being equivalent to ‘algorithmic’ or ‘mechanical’. Under this interpretation,
translation of a mathematical proof into a formal proof could perfectly be routine while it
might neither be apparent nor clear that such a translation could be carried out.

Third, the argument presupposes that the only possible connection between rigor and
formalization necessarily passes by the capacity to judge rigor and formalizability directly
from the ordinary presentation of mathematical proofs. There are, however, other ways to
establish such a connection. As we have seen in the previous sections, the standard view
achieves a connection between rigor and formalization through a tripartite combination of a
descriptive account of mathematical rigor, a normative account of mathematical rigor, and a
philosophical thesis relating the two.

In the section 5 of his article on the nature of informal proofs, Larvor (2012) identifies
several reasons to reject the standard view. One is particularly directed at Mac Lane’s own
formulation of the view:

Saunders Mac Lane, reflecting on mathematical rigour, claimed that, “In practice,
a proof is a sketch, in sufficient detail to make possible a routine translation of this
sketch into a formal proof.” (Mac Lane, 1986, p. 377). By ‘formal proof’, Mac Lane
means a proof that is not content-dependent: “...the test for the correctness of a
proposed proof is by formal criteria and not by reference to the subject matter at
issue” (Mac Lane, 1986, p. 378; emphasis added). However, the proofs that math-
ematicians create and deploy typically make inferences that exploit local features
of the subject-matter in hand. Euclid’s proof of the infinitude of primes employs
the fact that if a natural number m (> 1) divides another, n, it cannot divide
n+ 1. (Larvor, 2012, p. 724)

There are two issues with this argument. First, the argument interprets Mac Lane as saying
that, in practice, the correctness of mathematical proofs is assessed by “formal criteria” in a
similar way as the correctness of formal proofs are. But the second quote of Mac Lane is talking
about formal proofs, and is part of a paragraph discussing the standard of absolute rigor; it is
not about the criteria used to assess the correctness of mathematical proofs in practice, that is,
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the “sketches” discussed in the first quote. Indeed, as we saw in section 2, Mac Lane does not
consider that the verification of mathematical proofs in practice is similar to the verification
of formal proofs. Rather, he considers that the verification of proofs in practice proceeds via
“well-recognized general rules” (Mac Lane, 1979, p. 65)—what we have called higher-level rules
of inference or hl-rules. Second, such hl-rules do rely sometimes (indeed often) on the “local
features of the subject-matter in hand”, in the sense that some (indeed most) hl-rules have a
restricted scope of application. To see this, it suffices to consider, for instance, the hl-rule X2

is even ⇒ X is even that we saw in section 4—in the context of Hardy and Wright’s proof of
the irrationality of

√
2—and which can only be applied to an expression denoting a natural

number (another typical example is the hl-rule corresponding to mathematical induction).
This is also exactly what is happening with the example of Euclid’s proof of the infinitude of
primes used to illustrate the argument, for what is at stake in this case is simply the use of
the hl-rule:

X > 1, X divides Y ⇒ X does not divide Y + 1

where X and Y are placeholders for expressions denoting natural numbers, and which is also
a hl-rule with a restricted scope of application. In sum, the observation that the verification
of mathematical inferences in mathematical proofs can sometime “exploit local features of the
subject-matter in hand” is perfectly compatible with the standard view as reconstructed here.

Another reason to reject the standard view advanced by Larvor (2012) has to do with the
notion of routine translation:

Philosophers of mathematical practice have had plenty to say about the short-
comings of the view that ‘real’ proofs are sketches of derivations. One of the
lessons of Lakatos (1976) is that translating a mathematical argument into a more
formal idiom transforms it. By the time it is fully formalised [. . . ], it is no longer
the same piece of reasoning. Such translations are not ‘routine’ (to pick up Mac
Lane’s word); rather, traduttore, traditore. (Larvor, 2012, p. 725)

What this argument is saying is that the translation of a mathematical proof into a formal
proof cannot be routine because such a translation “transforms” the mathematical argument
in the mathematical proof one is starting with, and as a consequence the result “is no longer
the same piece of reasoning”. The argument presupposes then an interpretation of the term
‘routine’ according to which a routine translation should necessarily preserves the reasoning
under consideration. However, this is not the intended meaning of the term ‘routine’ as
it occurs in the standard view, and there are no requirements in the standard view that a
routine translation of a mathematical proof into a formal proof should preserve the reasoning
under consideration (at least in the sense of ‘preserve’ that matters for this argument). It
may be that the argument originates from an interpretation of the notion of translation as
being similar to a linguistic translation for which the primary requirement is precisely that
the translation preserves the meaning of the sentences under consideration. But the notion of
translation in the standard view is quite different from the one of linguistic translation. As
noted by Burgess (2015), who reports a metaphor originally proposed by the mathematician
and computer scientist Gil Kalai, a better analogy would be with the process of compilation,
that is, with the ‘translation’ of a computer program written in a high-level programming
language into machine language.

In another contribution, Larvor has proposed an argument against the standard view which
he considers to be independent of what can be said, from a psychological or sociological per-
spective, on “how human mathematicians individually and collectively come to understand and
confirm proofs” (Larvor, 2016, p. 402), i.e., “independent of questions about human cognitive
and social functioning” (Larvor, 2016, p. 403). The argument is presented as follows:
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Let P be a mathematician’s proof for a theorem C. Then it follows from the
Derivation Recipe model that P is not as it stands (before any translation) a proof
of C, but is rather an argument to convince the reader that:

C ′: there is a suitable formal system S such that `S γ, where γ is the formula in
S corresponding to C.

For the sake of clarity: this is not what proponents of the Derivation Recipe
model say; rather it is what the Derivation Recipe model amounts to once we
recognise that the existence of a suitable derivation is itself a mathematical claim.
The Derivation Recipe model requires that P must be, as it stands, before any
translation, a compelling, rigorous argument (epistemically equivalent to a proof)
of a mathematical conclusion, namely, C ′. [. . . ]

How can P work as a proof of C ′? If it is just a recipe for a derivation, this
would initiate an obvious regress. So, the Derivation Recipe picture must be
that P , gappy, informal and intuitive as it may be, is an adequate proof of the
mathematical claim C ′, whereas it is not an adequate proof of the mathematical
claim C. (Larvor, 2016, p. 403)

As I analyze it, this argument works in two steps: first, it starts from two premisses stating
that (P1) according to the standard view, for P to be a proof of C, P must be an argument for
C ′ and (P2) C ′ is a mathematical conclusion, and derives from them the conclusion that (C)
according to the standard view, for P to be a proof of C, P must be a proof of C ′; second, it
observes that the conclusion C is absurd, because it leads either to an infinite regress, or to the
strange claim that P would be an adequate proof of C ′ but not an adequate proof of C. From
our formulation of the standard view, the issue with this argument is that P1 is too strong.
More specifically, what P1 is saying, in the terminology we introduced, is that for being able to
judge a mathematical proof P as being rigorousD, i.e., as a rigorous mathematical proof from
the point of view of mathematical practice, a mathematical agent must first establish that
P is rigorousN . But in our formulation, establishing that P is rigorousN is not a necessary
requirement for judging P as being rigorousD, and it is indeed not a requirement at all. On
the contrary, the standard view works the other way around: it is by judging P as rigorousD
and by holding the standard view that one can come to the judgment that P is rigorousN ,
and thus obtain a ground for C ′. Thus, our formulation of the standard view does not lead to
the infinite regress pointed out by Larvor, a regress which would prevent mathematical agents
to ever be able to judge a proof as being rigorous in mathematical practice.

In a paper discussing the notions of informal proofs, mathematical rigor, and mathematical
knowledge, Antonutti Marfori (2010) provides several arguments against the standard view.
Many of them are similar to the ones just discussed, and so will not be tackled again here.
One argument is, however, quite different from the previous ones in that it is social in nature:

[T]he large convergence of the mathematical community on what makes for an
adequate proof looks as mysterious as the success of mathematical practice in
the light of the consideration that formalisation is seldom appealed to in order to
resolve controversies. This indicates that formalisation and rigour are independent
concerns of mathematicians, and that there must be some notion of informal rigour
that normatively governs practitioners’ work. (Antonutti Marfori, 2010, p. 267)

This argument rightly observes that mathematicians usually converge quite quickly in their
judgments of whether a purported proof constitutes or not a rigorous mathematical proof for a
given mathematical proposition. But for this to appear as mysterious, and thus to constitute
a challenge for the standard view, one needs to adopt a descriptive reading of the standard
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view, that is, a reading in which formalization would play a role in the process by which
mathematical proofs are judged to be rigorous in practice. As we have repeatedly emphasized,
such a descriptive reading should be rejected. Indeed, in our reconstruction, the notion of
formalization does not play a role in how the standard view conceives of the verification of
mathematical proofs in practice (see section 4). Now, does it follow from this sociological fact
that “formalisation and rigour are independent concerns”? What our reconstruction shows is
that these are concerns that can be separated, as witnessed by our separation between the
descriptive part—which does not appeal to the notion of formalization—and the normative
part of the standard view. But it does not follow from this that one cannot hold a view relating
the two. In particular, this does not prevent the two to be connected via the conformity thesis
as it is the case our reconstruction of the standard view. Finally, it should be noted that our
reconstruction agrees perfectly with the idea that “there must be some notion of informal rigour
that normatively governs practitioners’ work”. Indeed, the descriptive part of the standard
view precisely aims to capture the mechanisms that govern judgments of rigor in practice,
and thus constitutes a potential candidate for an account of informal rigor as advocated by
Antonutti Marfori (2010).

Tanswell (2015) has developed a general argument against what he calls ‘derivationist’
views, i.e., views for which “the rigour and correctness of informal proofs is taken to be
dependent (in some sense) on associated formal proofs” (Tanswell, 2015, p. 296). The argument
is directed at one particular derivationist view, that of Azzouni (2004), where informal proofs
are taken to ‘indicate’ formal proofs, but is meant to be a challenge to any derivationist view.
The heart of the argument goes as follows:

[According to derivationist views] it is the underlying formal proofs that are meant
to be ensuring the rigour and correctness of informal proofs, but if there are mul-
tiple different formal proofs simultaneously being depended upon this undermines
the effectiveness of the explanation the derivation-indicator account gives. For ex-
ample, what is there then to stop an informal proof from corresponding to both one
correct and one incorrect formal proof? [. . . ] Once it is conceded that there are
multiple different, non-equivalent, formal proofs underlying some informal proof,
we can immediately ask why it is these particular ones that are selected and what
ensures that it is only correct and rigorous formal proofs that are picked out.
(Tanswell, 2015, p. 302)

The argument is based on an obvious requirement of any derivationist view, namely that the
dependence relation of informal proofs on formal proofs be specified. Now, if any informal
proof would always depend on one, and only one, formal proof, then there would be no
issues in determining the dependence relation. But as Tanswell rightly points out, when one
is engaging in actually turning an informal proof into a formal one—e.g., with the help of
a proof assistant—one realizes that there are often different ways to proceed, which would
result in different and non-equivalent formal proofs—Tanswell refers to this phenomenon as
‘overgeneration’. It follows that derivationist views ought to address the two key questions
mentioned in the above quote, namely (1) “why it is these particular [formal proofs] that are
selected” and (2) “what ensures that it is only correct and rigorous formal proofs that are
picked out”. In other words, what derivationist views shall provide is “an explanation of how
exactly the informal proof can be used to pick out some formal proof or proofs” (Tanswell,
2015, p. 298). Insofar as the standard view qualifies as a derivationist view in Tanswell’s sense,
and furthermore fully embraces the overgeneration phenomenon, it is directly concerned by
these requirements and shall provide answers to the questions just raised. But, as it turns out,
a large part of our reconstruction of the standard view was indeed directed to these questions.
In particular, the standard view provides a direct explanation as to how an informal proof
‘picks’ specific formal proofs: the specific formal proofs to be picked are precisely those that
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can be obtained by routinely translating the initial informal proof. Insofar as the notion of
routine translation has been entirely specified in section 5, this provides a direct answer to
question (1). It also provides an answer to question (2) since, as we saw in section 6, a routine
translation, when applied to an informal proof that has (correctly) been judged to be rigorous
in practice, necessarily yields a (correct) formal proof. Thus, the standard view, in its present
reconstruction, is not concerned by the overgeneration problem.

The absence of a precise formulation of the standard view in the literature was a major ob-
stacle to a proper assessment of its strengths and weaknesses. Our reconstruction of the view
has made it possible in this section to carry out a more fine-grained evaluation of the main
arguments that have been advanced against it. From the perspective of our own formulation
of the standard view, the main arguments proposed against it rests on one or more of the
following misinterpretations of the view: (1) a confusion on the meaning of the term ‘routine’;
(2) a reading of the standard view as providing a descriptive account of mathematical rigor;
(3) a presupposition that any connection between rigor and formalizability necessarily passes
by a direct judgment of these qualities from the ordinary presentation of mathematical proofs;
(4) an interpretation of the standard view as stating that the rigor of mathematical proofs in
practice is assessed by formal criteria; (5) an interpretation of the standard view as requiring
that for judging a proof to be rigorousD, an agent must first establish that the the proof be
rigorousN ; (6) an assessment that the standard view does not specify the dependence relation
between an ordinary mathematical proof and the formal proof that could be obtained through
a routine translation. It should be noted that these interpretations were perfectly legitimate
given the previous formulations of the standard view available in the literature. As we men-
tioned in section 2, it is not surprising that the standard view has been left underspecified
since the view was only a consequence of the projects pursued by Mac Lane and Bourbaki,
and that these two authors did not have as a primary objective to provide a characterization
of mathematical rigor as a quality of mathematical proof. Finally, the fact that the argu-
ments reported here are found wanting does not mean, of course, that our formulation of the
standard view is immune to any criticism. It shows, however, that the standard view, when
properly construed, is more robust than previously thought.

8 An argument in favor of the standard view

Although the standard view is endorsed by many philosophers and logicians and is almost
considered as an orthodoxy among contemporary mathematicians, it is surprisingly hard to
find an articulated defense of it in the literature and to pinpoint arguments specifically ad-
vanced to support it.24 This might be explained by the absence of a precise formulation of
the standard view, which makes it hard to figure out how exactly the view is supposed to
be defended, and what is to be expected of arguments aiming to support it. The reconstruc-
tion of the view provided in this work allows to overcome this difficulty, making it possible
to identify more precisely what is required to defend it. In the previous sections, we have
specified what it means for a mathematical proof to be rigorousD and rigorousN , and we have
already argued for the conformity thesis. But for the standard view to succeed in what it has
been designed for—i.e., to establish a tie between the practice and the ideal of proof—there
is still a central element that needs to be argued for, namely that the descriptive account of
mathematical rigor embedded in the standard view—what we have called the descriptive part
of the standard view—is indeed a faithful model of how mathematical proofs are judged to

24Hersh (1997) holds this against the standard view. While examining the assertion that “Any correct
practical proof can be filled in to be a correct theoretical proof ” (Hersh, 1997, p. 154), Hersh observes that this
assertion is “commonly accepted”, but he remarks that he has seen “no practical or theoretical argument for
it, other than absence of counterexamples” (Hersh, 1997, p. 154). Hersh concludes that “It may be true” but
that “It’s a matter of faith” (Hersh, 1997, p. 154).
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be rigorous in practice. This claim is particularly hard to argue for, since it is essentially an
empirical claim about mathematical practice.25 Yet, an indirect argument for it can still be
provided on the basis of an approach originally proposed by Mark Steiner (1975). The aim of
this section is to construct this argument.

In his book entitledMathematical Knowledge, Steiner undertakes an analysis of the concept
of “knowing a proof” (Steiner, 1975, chap. 3, sec. 3). He proposes the following characteriza-
tion:

[A] mathematician is said to know a proof of S, if, working with a logician who
supplies no premises, he could produce a formal proof of P (i.e., the wff which
expresses S) [. . . ]. (Steiner, 1975, p. 100)

The logician acts here as a “midwife” (Steiner’s term) whose task is “to make explicit only
those premises and arguments that were implicit in the mathematician’s initial [proof of S]”
(Steiner, 1975, pp. 100–101). To this end, the logician engages in a specific dialogue with the
mathematician. This dialogue should be epistemically conservative in the sense that it should
not import or reveal “more knowledge than the mathematician had before” (Steiner, 1975,
p. 101). Once all the required information has been made explicit through this dialogue, to
obtain a formal proof the logician must then pursue by translating the propositions of the
informal argument into the considered formal language and by providing the logical steps
omitted by the mathematician. The key issue here is to set rightly the “power” of the logician,
for as Steiner emphasizes:

If [the logician] is dull, his failure should not be laid at the doorstep of the math-
ematician’s alleged ignorance. On the other hand, we cannot envision a superhu-
man, because such a being would discover a completed proof despite the ignorance
of the mathematician. (Steiner, 1975, pp. 101–102)

For Steiner, this logician should be such that he is “brillant at analysis and symbolic manipu-
lation” but “lacks mathematical creativity” (Steiner, 1975, p. 102). The mathematician is then
said to know a proof of S if the logician succeeds in finding a formal proof of P (the formal
translation of S) through the procedure just described.

The approach adopted by Steiner can be adapted to extract an important datum regarding
rigor judgments of mathematical proofs in mathematical practice. To do so, we will now intro-
duce a similar dialogue as the one imagined by Steiner, but this time the participants in the
dialogue will not be a mathematician and a logician but two mathematicians. This dialogue
can be construed as a game in which one mathematician—the defender—aims to defend her
claim that a certain mathematical proof P is rigorous while the other mathematician—the
challenger—aims to challenge this claim. The game takes the form of a sequence of ques-
tions asked by the challenger and answered by the defender, each question being immediately
followed by a potential answer to it. The game starts with the defender putting the mathe-
matical proof P “on the table”, the proof being then expanded with the answers provided by
the defender. At stage s, the challenger can ask two different types of questions regarding the
proof Ps on the table: she can challenge a premiss of an inference I in Ps by asking “How do
you know this premiss of I?”, or she can challenge an inference I of Ps by asking “How do
you know that the conclusion of I follows from its premiss(es)?”. Similarly to the dialogue
imagined by Steiner, the answers of the defender should be epistemically conservative, in the
sense that the defender cannot draw or verify new inferences to answer the questions of the
challenger and can only appeal to knowledge she had before her claim that P is rigorous,
otherwise the defender could simply verify P in the course of the dialogue. In other words,
the defender can only report knowledge acquired, and actions taken, prior to her claim that

25We will come back to this issue in the conclusion.
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P is rigorous. Furthermore, to avoid that the game enters into an infinite loop, we should
add as a constraint that the challenger cannot challenge twice the same premiss or inference,
that is, each answer from the defender should be either fully accepted or fully rejected by the
challenger. If at some point it happens that the defender cannot answer a question asked by
the challenger, then the game stops and the challenger wins the game. The idea here is that
the challenger has revealed through the dialogue a failure in the defender’s verification of P ,
forcing the defender to give up her initial claim that P is rigorous.26 If the game is pursued
up to a stage s in which each premiss involved in the inferences in Ps is either a definition,
the conclusion of a previous inference, a primitive axiom, or an assumption to be discharged
later on in Ps, and each inference in Ps is an instance of a primitive rule of inference, then
the game stops and the defender wins the game. The idea here is that the challenger is then
forced to accept all the inferences in Ps, and as a consequence is forced to grant the claim
to the defender that the proof P is rigorous. We will refer to this game as the rigor game
associated to P .27

Now, it seems plain that the following implication holds: if a mathematician has properly
judged a mathematical proof P to be rigorous, then she possesses a winning strategy against
the challenger in the rigor game associated to P . This dialogical implication, as we shall call it,
should be considered as a datum from the perspective of mathematical practice, for it simply
embeds the obvious claim that if a mathematician cannot answer at least one of the challenges
put forward by the challenger, then this means that either she has used a premiss that she is
not able to prove, or she has made an inference that she is not able to justify, and in both cases
this reveals a failure in her verification of P . If this implication is correct, being able to satisfy
this implication constitutes a requirement that any descriptive account of mathematical rigor
shall meet in order to be acceptable.

The descriptive account of mathematical rigor embedded in the standard view does meet
this requirement. To see this, first assume that a mathematician has properly judged a math-
ematical proof P to be rigorousD and consider a given stage s in the rigor game associated
to P . Since the defender has judged P to be rigorousD, she can answer all the possible chal-
lenges that the challenger can put forward at stage s: if the challenge concerns a premiss
of an inference in Ps, then in the case where the premiss is a definition, the conclusion of a
previous inference, or an assumption to be discharger later on in Ps, the defender can simply
points this out, and otherwise the defender can reply that she possesses a proof certificate
for this premiss, and she can then update the proof Ps with the corresponding sequence of
inferences—i.e., applications of hl-rules—she used to establish it; if the challenge concerns
an inference of Ps, then the defender can reply that she possesses a rule certificate for the
hl-rule R she used to carry out this inference, and she can then update the proof Ps with
the sequence of inferences—i.e., applications of hl-rules—she previously used to acquire the
hl-rule R.28 The defender possesses then a winning strategy against the challenger in the
rigor game associated to P . It is thus noticeable that the descriptive account of mathematical
rigor embedded in the standard view provides a clear picture of what the winning strategy in
the dialogical implication could consist in, and this should be taken as a piece of evidence in

26Of course, the defender might restore later on her claim that P is rigorous by engaging into further
verification.

27The structure of these rigor games is, of course, reminiscent of the games and dialogues developed and
studied in the contexts of game-theoretical semantics (Hintikka and Sandu, 1997), dialogical logic (Keiff, 2011),
the dialogical account of deduction proposed by Dutilh Novaes (2016), and the prover-skeptic dialogues intro-
duced by Sørensen and Urzyczyn (2006). Notice, however, that the use of the rigor games here is of a very
different nature than in these other works: the point is not to define or characterize notions such as truth,
validity, deduction, or proof, but rather to reveal certain features of the process of verification that the defender
has previously carried out and which serves at the basis of her claim that the mathematical proof P under
consideration is rigorous.

28The definitions of the notions of proof certificate and rule certificate were provided in section 4.2.
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support of the claim that it is a faithful model of how mathematical proofs are judged to be
rigorous in practice. But this only constitutes an indirect argument for this claim insofar as
nothing prevents the possibility that an alternative descriptive account of mathematical rigor
would satisfy as well the dialogical implication.

Interestingly, the dialogical implication can be exploited to yield a direct argument in
favor of the standard view. To see this, it suffices to notice that whenever a mathematician
possesses a winning strategy against the challenger in the rigor game associated to P , she
then has the capacity to turn P into what we have previously called an intermediate-level
proof, that is, a proof in which every inference is an instance of a primitive rule of inference
and every premiss is either the conclusion of a previous inference, a primitive axiom, or
an assumption to be discharged (see section 5.1). Assuming that the computational power
of a human mathematician does not exceed the one of a Turing machine, this means that
there exists an algorithmic procedure able to turn any rigorous mathematical proof P into an
intermediate-level proof. Together with the considerations provided in section 5.2, one can
then conclude that there exists an algorithmic procedure able to turn P into a lower-level
proof, that is, into a formal proof. This means that one can directly obtain from the dialogical
implication a ground for the view that whenever a mathematical proof P has been judged to
be rigorous, it can be routinely turned into a formal proof. However, from the perspective
of the epistemology of mathematics, this argument is not entirely satisfying for it does not
tell us what rigor in mathematical practice is, nor what rigor judgments amount to. The
argument merely identifies a high-level property of the notion of rigor as used in practice, and
exploits it to provide a ground for the existence of an algorithmic procedure able to turn any
rigorous mathematical proof into a formal proof. However, if one only wants to make sure
that whenever a mathematical proof has been judged to be rigorous in practice it indeeds
meets the normative condition that it can be routinely translated into a formal proof, then
this argument is sufficient by itself. This direct argument might then be the reason why the
standard view enjoys such a widespread acceptance in mathematical practice.

The argument in favor of the standard view provided here is based on what we have called
the dialogical implication which can be considered as a datum from mathematical practice.
This is only an indirect argument, as nothing prevents an alternative descriptive account of
mathematical rigor to also satisfy the dialogical implication. A direct argument in favor of
the standard view can be obtained from the dialogical implication, but this argument treats
the process by which proofs are judged to be rigorous in practice as a ‘black box’. From an
epistemological perspective, a more satisfying argument shall provide direct empirical support
for the empirical claim that the descriptive account of mathematical rigor embedded in the
standard view is indeed a faithful model of how proofs are judged to be rigorous in practice.

9 Conclusion

The aim of this paper was to provide a precise formulation and a thorough evaluation of the
standard view of mathematical rigor. Our reconstruction has revealed that the standard view
is the combination of three components:

1. A certain conception of the mechanisms by which mathematical proofs are judged to
be rigorous in mathematical practice, according to which mathematical inferences are
first decomposed into immediate mathematical inferences via certain proof search pro-
cesses, and immediate mathematical inferences are then verified using higher-level rules
of inference. This is the descriptive part of the standard view.

2. A certain conception of what it means to say that a mathematical proof P can be rou-
tinely translated into a formal proof, where the notion of routine translation is conceived
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as the combination of three successive translations turning a mathematical proof pro-
vided at the vernacular level into one at the lower-level—i.e., into a formal proof—and
where the term ‘routine’ is interpreted as being equivalent to ‘algorithmic’. This is the
normative part of the standard view.

3. A philosophical appraisal of the relation between the mechanisms involved to judge the
rigor of mathematical proofs in practice and the ideal standards of formal proof—i.e., of
the relation between the descriptive part and the normative part of the standard view—
according to which whenever a mathematical proof has been judged to be rigorous in
mathematical practice, it can be routinely translated into a formal proof. This is the
conformity thesis.

Taken together, these three components provide a precise formulation of the standard view,
one which can support a detailed evaluation of its strengths and weaknesses. In the previous
two sections, we have examined the main arguments against and in favor of the standard view
that can be found in the literature. All the arguments advanced against the standard view that
we have examined were found wanting, and most of them were found to originate in what we
consider to be misinterpretations of the standard view. We have then constructed an argument
in favor of the standard view which aims to support a claim necessary for the standard view
to work, namely that the descriptive part of the standard view is indeed a faithful model
of how mathematical proofs are judged to be rigorous in practice. This argument provides
support for this claim, but it is only an indirect argument insofar as it may be compatible
with alternative accounts of how proofs are judged to be rigorous in practice.

Two main conclusions can be drawn from the present study. First, the standard view—in
its present reconstruction—is more robust to criticisms than it has been suggested by the
various papers which have opposed it. This is, of course, not to say that the standard view
is immune to any challenge. Indeed, one interest of the precise formulation provided here
is to open the way to a detailed scrutiny of the standard view so as to identify its eventual
drawbacks and weaknesses.

Second, the standard view is still in need of further support, given that the dialogical
argument only provides partial support for it. The element of the standard view which is the
most open to criticisms, and which requires further evidence to support it, is the descriptive
part. The crucial point to acknowledge here is that the descriptive part is, ultimately, an em-
pirical claim, since it is a claim concerning the mechanisms by which mathematical proofs are
judged to be rigorous in practice. In this respect, the descriptive part needs to be supported
by empirical evidence. What are the proper forms of empirical evidence to do so remains to
be determined. But the corresponding empirical inquiry can be conducted along two paths,
aiming respectively to confirm or to refute the standard view. In the first case, the objec-
tive will be to provide empirical evidence that the way mathematical agents verify proofs in
practice conforms to the mechanisms proposed in the descriptive part. In the second case,
the objective will be to identify cases of mathematical inferences for which it can be argued,
based on empirical evidence, that either the verification of these mathematical inferences in
practice cannot follow the mechanisms provided by the descriptive part, or that an alternative
descriptive account of mathematical rigor—to be specified—is superior to the one provided
by the descriptive part.

We mentioned at the beginning that the raison d’être of the standard view was to provide
a tie between the practice and the ideal of proof. As Bourbaki put it:

If formalized mathematics were as simple as the game of chess, then once our
chosen formalized language had been described there would remain only the task
of writing out our proofs in this language [. . . ]. But the matter is far from being as
simple as that, and no great experience is necessary to perceive that such a project
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is absolutely unrealizable: the tiniest proof at the beginning of the Theory of Sets
would already require several hundreds of signs for its complete formalization.
(Bourbaki, 1970, p. 10)

We shall therefore very quickly abandon formalized mathematics, but not before
we have carefully traced the path which leads back to it. (Bourbaki, 1970, p. 11)

Thus, written in accordance with the axiomatic method and keeping always in
view, as it were on the horizon, the possibility of a complete formalization, our
series lays claim to perfect rigour [. . . ]. (Bourbaki, 1970, p. 12)

If it can be shown that this tie cannot be maintained for some mathematical practices, then
this would have for direct consequence to force a revision of the contemporary ideal of proof.
Investigating the mechanisms by which mathematical proofs are judged to be rigorous in
various mathematical practices, and eventually identifying thereby some challenges for the
standard view of mathematical rigor, shall then remain a topic of primary importance for the
philosophy of mathematics.
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