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Abstract

Topological relations such as inside, outside, or intersection are ubiquitous to our spatial think-

ing. Here, we examined how people reason deductively with topological relations between

points, lines, and circles in geometric diagrams. We hypothesized in particular that a coun-

terexample search generally underlies this type of reasoning. We first verified that educated

adults without specific math training were able to produce correct diagrammatic representa-

tions contained in the premisses of an inference. Our first experiment then revealed that sub-

jects who correctly judged an inference as invalid almost always produced a counterexample

to support their answer. Noticeably, even if the counterexample always bore a certain level

of similarity to the initial diagram, we observed that an object was more likely to be varied

between the two drawings if it was present in the conclusion of the inference. Experiments 2

and 3 then directly probed counterexample search. While participants were asked to evaluate

a conclusion on the basis of a given diagram and some premisses, we modulated the difficulty

of reaching a counterexample from the diagram. Our results indicate that both decreasing the

counterexample density and increasing the counterexample distance impaired reasoning perfor-

mance. Taken together, our results suggest that a search procedure for counterexamples, which

proceeds object-wise, could underlie diagram-based geometric reasoning. Transposing points,

lines, and circles to our spatial environment, the present study may ultimately provide insights

on how humans reason about topological relations between positions, paths, and regions.

Keywords: Diagram-based geometric reasoning ; Counterexample search ; Topological rela-

tions ; Geometric cognition ; Mathematical reasoning ; Spatial reasoning.
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Counterexample search in diagram-based geometric reasoning

1 Introduction

Thinking and reasoning about entities in the space surrounding us is one of our essential

cognitive abilities and a topic of intense research in cognitive sciences (see, e.g., Burgess, 2008;

Hegarty & Stull, 2012; Majid, Bowerman, Kita, Haun, & Levinson, 2004; Newcombe, 2018;

Shah & Miyake, 2005; Tversky, 2005; Wang & Spelke, 2002). Among our spatial cognitive

abilities, our capacity for spatial deductive reasoning allows us to infer new information about

the spatial arrangements of objects from information we may have obtained through observa-

tion or communication. For instance, being told that “the toolbox is behind the car” and having

observed that “the car is behind the truck”, you may safely infer that “the toolbox is behind the

truck”. Spatial deductive reasoning of this kind has been extensively studied in the psychol-

ogy of reasoning (see, e.g., De Soto, London, & Handel, 1965; Byrne & Johnson-Laird, 1989;

Van der Henst, 2002; Knauff, 2013; Ragni & Knauff, 2013; for a review of earlier work see

Evans, Newstead, & Byrne, 1993, chapter 6). However, previous studies have almost exclu-

sively focused on discrete positional relations (e.g., to the left of, to the right of, above, below,

behind, in front of, etc.) or on one-dimensional topological relations (Knauff, 1999; Knauff,

Strube, Jola, Rauh, & Schlieder, 2004), but have not typically studied topological relations in-

volving regions and their boundaries (such as being inside, outside, or intersecting) that are yet

fundamental to our spatial understanding.

By its very nature, diagram-based geometric reasoning constitutes both a privileged and

familiar setting to study reasoning with topological information since geometric objects such as

points, lines, and circles are among the simplest entities to support inferences involving topo-

logical relations. Reasoning with geometric diagrams is also one of the oldest form of math-

ematical and scientific thinking going back to the revolutionary work of Thales, Euclid, and

Archimedes in ancient Greece (Netz, 1999). It played an important role in various human in-

tellectual achievements in astronomy, architecture, engineering, and land management (Kline,

1972). It remains today the way that many students are introduced to the method of deductive

proof in mathematics (NCTM, 2000). But while it has been extensively studied by historians

(Mueller, 1981; Netz, 1999), philosophers (Giaquinto, 2011; Macbeth, 2010; Manders, 2008;
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Panza, 2012), and logicians (Avigad, Dean, & Mumma, 2009; Miller, 2007; Mumma, 2006), it

has received only very little attention in experimental psychology so far (for a notable excep-

tion, see Koedinger, 1991; Koedinger & Anderson, 1990).

In the past decades, cognitive studies conducted in children and adults of various cultural

backgrounds have revealed that all humans possess capacities of intuitive geometric reasoning.

For example, Amalric et al. (2017) showed that all humans, regardless of their age and level

of education, spontaneously use rotations and axial symmetries to detect and predict regulari-

ties in geometric spatial sequences. Moreover, Amazonian Mundurukú people, even if largely

deprived of formal schooling and of numerical and geometric lexicon, nonetheless exhibited

intuitions about the intersection of two lines extended indefinitely, or about the alignment of

some points in the plane and to a lesser extent on a sphere (Izard, Pica, Spelke, & Dehaene,

2011). They could also successfully complete a triangle from its base with the appropriate an-

gle (Izard et al., 2011; see also Hart et al., 2018), and proved able to read and use geometric

information contained in abstract maps in order to locate a target object, even though it was the

first time they were presented with such tools (Dehaene, Izard, Pica, & Spelke, 2006; see also

Dillon, Huang, & Spelke, 2013; Izard, O’Donnell, & Spelke, 2014).

At a radically different level, some cognitive studies attempted to describe and model ex-

pert geometric reasoning. Koedinger and Anderson (1990) have monitored the successive steps

that experts in geometry take to solve classical problems of triangle geometry (see also Kao,

Douglass, Fincham, & Anderson, 2008; Koedinger, 1991). They notably found that experts

consistently focus on the same important steps and skip the same minor ones. Interestingly,

these important steps seem to correspond to perceptual chunks on the geometric diagrams cor-

responding to the problems. These observations led to the construction of a model of expertise

in geometric proof problem solving that has been used to inform the development of cognitive

tutors (Koedinger & Anderson, 1993; Ritter, Anderson, Koedinger, & Corbett, 2007). Pursuing

in this direction, Koedinger (1998) has characterized the cognitive skills in conjecturing and

proving to be acquired in a high-school geometry course, and has made proposals on how to

use interactive geometry software to enhance the learning of these skills.
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Diagram-based geometric reasoning—understood here as reasoning with topological re-

lations between geometric objects through geometric diagrams (see Figure 1)—lies between

these different forms of geometric reasoning. On the one hand, it is more specific than the

expert geometric reasoning just discussed in that it concerns individual inferences and not the

process of finding a sequence of inferences for solving a geometric problem. On the other hand,

it is more general than the different kinds of intuitive geometric reasoning previously studied

in that it does not concern particular or specific geometric objects presented visually but rather

classes of geometric objects standing in certain relations which are stated in linguistic form. Yet

it still appears as a form of intuitive geometric reasoning insofar as it does not require advanced

geometric expertise of the kind required to find geometric proofs.

Point A is inside circle BCD

Point B is on circle BCD

Point B is inside circle ACE

Point A is on circle ACE

Circle BCD intersects circle ACE

Figure 1. Diagram accompanying the proof of Proposition 1 from Book I of Euclid’s

Elements. This proposition shows how to construct an equilateral triangle on a given finite

straight line with only a compass and a ruler (Euclid, 1959, pp. 241-242). To go through, the

proof requires to infer from the diagram that the two constructed circles intersect. This is a

typical diagram-based geometric inference where premisses and conclusion consist of

topological relations between geometric objects.

The cognitive roles and functions of diagrams have been investigated with respect to many

forms of reasoning such as syllogistic reasoning (e.g., Stenning & Oberlander, 1995; Stenning

& Yule, 1997), mechanical reasoning (e.g., Hegarty, 1992, 2004; Heiser & Tversky, 2006),

double-disjunctive reasoning (e.g., Bauer & Johnson-Laird, 1993), and analogical reasoning

(e.g., Pedone, Hummel, & Holyoak, 2001), among others (for reviews, see Hegarty & Stull,
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2012; Shah & Miyake, 2005; Tversky, 2005). Landy and Goldstone (2007a, 2007b) have ar-

gued that symbolic reasoning in algebra and logic is, in some respects, akin to diagrammatic

reasoning since it relies on spatial properties of formal notations. In an educational context,

Koedinger and Terao (2002) and Booth and Koedinger (2012) have also investigated the po-

tential advantages and drawbacks of using diagrammatic representations in solving elementary

algebra problems. However, the specific use of diagrammatic reasoning in elementary Eu-

clidean geometry has yet to be addressed by cognitive sciences. Thanks to recent advances in

philosophy (Manders, 2008) and logic (Avigad et al., 2009; Miller, 2007; Mumma, 2006) that

provide a precise characterization of diagram-based geometric reasoning, it is now amenable

to experimental investigation.

In this study, we investigated the capacity of educated adults to reason with topological

relations between geometric objects through geometric diagrams. A skill central to mathemat-

ical and scientific thinking, and essential in common sense reasoning and critical thinking, is

the ability to find counterexamples—this is the main method to show that a deductive argument

is invalid. This ability is an important target for mathematics educators (see, e.g., Weber, 2009;

Zaslavsky & Ron, 1998; Zazkis & Chernoff, 2008), and is intimately connected with rational

thinking, for instance in the context of Wason’s (1968) selection task. The ability to find coun-

terexamples plays a central role in some psychological theories of human reasoning such as

the mental model theory (Johnson-Laird, 2006, 2010), but only few studies have addressed it

directly (see, e.g., Bucciarelli & Johnson-Laird, 1999; Johnson-Laird & Hasson, 2003), and it

has been left out of some other theories based on formal rules (Braine & O’Brien, 1998; Rips,

1994), probabilities (Oaksford & Chater, 2001, 2007), or verbal reasoning (Polk & Newell,

1995). In fact, as R. M. J. Byrne, Espino, and Santamaria (1999) pointed out: “it has proved

more difficult to examine experimentally the search for counterexamples, and it remains the

case that little is known about how counterexample search is carried out” (R. M. J. Byrne et al.,

1999, p. 348). Here, we tested the hypothesis that counterexample search underlies diagram-

based geometric reasoning. Alternative hypotheses would be for diagram-based geometric rea-

soning to rely on mental rules (Braine & O’Brien, 1998; Rips, 1994), probabilities (Oaksford

& Chater, 2001, 2007), or verbal reasoning (Polk & Newell, 1995), in which case the result-
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ing cognitive accounts would not appeal to any form of search procedure for counterexamples.

Among contemporary psychological theories of human deductive reasoning, only the mental

model theory postulates a role for counterexample search within the reasoning process proper.

However, we shall see that the counterexample search procedure we identify presents some

differences with that postulated by the mental model theory. The main objectives of this study

were thus (1) to investigate whether people evaluate the validity of diagram-based geometric

inferences by searching for counterexamples, and if so (2) to examine the underlying search

procedure. To this end, we conducted three experiments in which educated adults engaged

in reasoning with geometric diagrams that they had constructed (Experiment 1) or that were

provided to them (Experiments 2 and 3).

2 Formal Characterization of Diagram-Based Geometric Inferences

The formal characterization of diagram-based geometric inferences adopted in this study

is based on the formal system developed by Avigad et al. (2009). Following this system, we

considered a formal language L with three types of objects:

• points denoted by A, B, C, etc.,

• lines denoted by L, M, N, etc.,

• circles denoted by α , β , γ , etc.,

together with the following set of relations:

• point A is {inside, on, outside} circle α ,

• point A is {on, off} line L,

• points A and B are {on the same side, on opposite sides} of line L,

• point B is {between, not between} points A and C on line L,

• line L {intersects, does not intersect} line M,

• line L {intersects, does not intersect} circle α ,
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• circle α {intersects, does not intersect} circle β ,

• circle α is {inside, outside} circle β .

A proposition in the language L is always an atomic formula consisting of a single relation

between particular geometric objects, e.g., “point A is inside circle α” or “circle α intersects

circle β”.

In this setting a diagram-based geometric inference I is entirely characterized by a set of

premisses and a conclusion in the language L . Here are two examples of such inferences:

Point A is inside circle α

Points A is on line L

(I1)

Line L intersects circle α

Point A is outside circle α

Points A is on line L

(I2)

Line L intersects circle α

In order to say when a diagram-based geometric inference is valid or invalid, we have to define

the notion of a model (in the logical sense) for a set of propositions in L . A model for a set

of propositions Φ in L is a geometric configuration involving only the geometric objects men-

tioned in Φ and in which all the propositions in Φ are true. A geometric configuration is here

defined as a set of geometric objects in the Euclidean plane. We then say that a diagram-based

geometric inference I is valid whenever its conclusion is true in all the models of its premisses,

and invalid otherwise. A geometric configuration in which the premisses of I are true and the

conclusion is false is called a counterexample to I. Thus, a diagram-based geometric inference

is valid if there are no counterexamples to it, and invalid when there exists such a counterexam-

ple. In the two examples above, the inference I1 is valid while the inference I2 is invalid. Figure

2 illustrates the notions of model and counterexample in the cases of inferences I1 and I2.

In the experiments reported below, we considered different sets of diagram-based geomet-

ric inferences. Each set always contained an equal number of valid and invalid inferences, and

parameters such as the number of objects and the number of premisses were systematically

varied.



COUNTEREXAMPLE SEARCH IN DIAGRAM-BASED GEOMETRIC REASONING 9

(a) (b) (c)

Figure 2. Three geometric configurations involving a point A, a line L, and a circle α . (a) A

model of the premisses and the conclusion of I1. (b) A model of the premisses and the

conclusion of I2. (c) A counterexample to I2.

3 Experiment 1

In this paper-and-pencil experiment, we first verified that educated adults were capable of

evaluating the validity of diagram-based geometric inferences. We then investigated whether

their reasoning relies on a search for counterexamples. If this is the case, we expected them

(1) to be able to provide a counterexample to an inference they judged as invalid, and (2) to

judge an inference as valid when they failed to find a counterexample to it. Failure to find a

counterexample to an invalid inference would lead to mistakenly classify it as valid. Such a

mistake is not possible in the case of a valid inference. For this reason, we expected adults to

judge more accurately valid inferences as compared to invalid ones.

We thus confronted participants with a set of geometric reasoning problems. For each

problem, we first evaluated their ability to draw a possible diagrammatic representation of a

situation described by a set of premisses. We then asked them to determine which relation held

among certain objects of their drawing and to judge whether this relation necessarily followed

from the premisses. When they answered negatively—i.e., when they judged the inference as

invalid—they were asked to illustrate their answer with a second drawing. This last question al-

lowed us to evaluate the participants’ ability to produce counterexamples to invalid inferences,

without directly asking for one. Finally, the systematic comparison of the first and second

drawings allowed us to identify some characteristics of the counterexample production.
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3.1 Method

3.1.1 Design and Materials. Participants carried out 18 reasoning problems (see Table

S1, supplementary materials), half valid, and the other half invalid. The problems concerned

either 3, 4, or 5 geometric objects, equally distributed. All the problems with 3 objects had 2

premisses; the problems with 4 and 5 objects had either 2, 3, or 4 premisses, equally distributed.

The order of presentation of the problems was randomized.

The 18 reasoning problems were presented in a booklet, each of them on a double page

of paper. On the left page, the objects and the premisses of the problems were listed, e.g., “We

consider a situation concerning a point A, a line L, a circle α such that: point A is inside circle

α; point A is on line L” (inference I1). The participants were then asked to draw a possible

representation of that situation. We noted in the instructions that the lines in the problems

could always be extended indefinitely at each of their extremities. While the participants were

working on the left page, the right page was masked by a white sheet of paper. On the right

page, once uncovered, the participants were asked to choose which relation held among some

objects of their first drawing, e.g., “Which of these options correspond to your drawing: line

L intersects circle α; line L does not intersect circle α”. Then the participants had to decide

whether this relation was necessarily the case in the situation described by the premisses. Fi-

nally, if they answered negatively to this reasoning question, they were asked to illustrate their

answer with a (second) drawing.

3.1.2 Procedure. The participants were tested individually in a quiet room. Each par-

ticipant received a booklet, a pencil, a ruler, and a compass. They were instructed to use the

ruler and compass provided to produce the drawings, and to carefully label each object in their

drawings. The participants were asked to answer systematically, and when uncertain, to opt for

the most plausible answer. They were also told to maintain the white sheet of paper masking

the second page of each problem until they were done working on the first page. They could

work at their own pace, and were specifically told never to go back to a previous problem. They

were not allowed to write or draw on additional pieces of paper. The experiment lasted between

20 and 40 minutes depending on each participant.
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3.1.3 Participants. The 24 participants who took part in this experiment were French

speaking adults (15 female, age range: 18-75, mean: 33.4) from the Paris urban area. They

had very diverse university backgrounds such as biology, philosophy, economy, physics, lit-

erature, psychology, cognitive sciences, geology, human resources, geopolitics, cinema, etc.

But none of them were studying or had studied math per se at the university. They were re-

cruited via the RISC platform (“Relais d’Information sur les Sciences Cognitives”) and they

were compensated 5 euros for their participation. The experiment was performed according to

the Declaration of Helsinki (2013) such that all participants provided informed consent prior to

the experiment.

3.1.4 Statistical Analysis. We used the software environment R (R Core Team, 2018)

and the software RStudio (RStudio Team, 2016) for descriptive and quantitative statistical anal-

yses. In particular, mixed effect regressions were performed with the R package lme4, and

post-hoc tests with the package emmeans.

3.2 Results

We first assessed participants’ ability to make correct diagrammatic representations of

the geometric situations by evaluating for each problem whether the premisses were correctly

represented. To this end, each drawing was attributed a score corresponding to the proportion

of premisses correctly instantiated in the diagram. Across all participants and problems, 92.3

± 4.2% of the first drawings were correct. We performed a logistic regression on the drawing

scores with the problem validity, the numbers of objects and the number of premisses as fixed

effects and the subjects as random effect. No effect of validity was found (valid problems:

91.0 ± 4.6%; invalid problems: 93.6 ± 3.7%; t(23) = 1.63, n.s.; see Figure 3). The number of

premisses did not affect the correctness of the drawings either (2 premisses: 93.3 ± 4.5%; 3

premisses: 89.6 ± 3.8%; 4 premisses: 92.4 ± 3.6%; ts < 1.1, n.s.). The number of objects did

not have any impact either on the ability of participants to draw a correct representation of the

premisses (3 objects: 95.5 ± 3.5%; 4 objects: 89.1 ± 5.2%; 5 objects: 92.3 ± 3.5%); ts < 1.4,

n.s.).

We then evaluated whether each geometric situation described in our problems tended to
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be represented in a common manner by the participants. By design, there is only one possible

topological configuration compatible with the premisses for valid inferences, while there are

multiple ones for invalid inferences. Supplementary Table S2 shows that participants tended to

prefer one of the topological configurations for the invalid problems 4, 6, 12, 14, and 18.

We then analyzed participants’ performance in determining whether the conclusion of a

problem necessarily followed from the premisses. To do so, only the problems that participants

perfectly understood could be taken into account. We thus restricted our analysis to the cases

for which the first drawing was a correct representation of the premisses (hence discarding

7.7% of the data). In these cases, participants answered the reasoning question 87.8 ± 6.8%

correctly. Again, we applied a logistic regression on the reasoning scores (0 or 1) with the

problem validity, the number of objects and the number of premisses as fixed effects and the

subjects as random effect. This time, we found a significant effect of validity on participants’

accuracy in response to the reasoning question (valid problems: 96.0± 4.1%; invalid problems:

80.1± 8.3%; t(23) = 3.63, p < 0.005). Problems with 4 premisses also appeared to induce more

errors (% correct for 2 premisses: 89.4 ± 6.4%; 3 premisses: 94.2 ± 4.9%; 4 premisses: 77.9

± 8.7%; t(20) = 2.79, p < 0.05 when comparing 3 and 4 premisses). Finally, problems with 4

and 5 objects did not induce more errors in the reasoning question than problems with 3 objects

(3 objects: 88.7 ± 6.6%; 4 objects: 84.2 ± 7.6%; 5 objects: 90.4 ± 6.2%; ts < 1.6, n.s.).

In the cases where a problem was correctly judged as invalid, the participants almost al-

ways provided a counterexample to it. We evaluated the correctness of the second drawing

following the same procedure as for the first drawing. The percentage of correct second draw-

ings given a correct first drawing and a correct response to the reasoning question was equal

to 96.6 ± 3.8% (see Figure 3). More specifically, for all invalid problems but one, participants

who correctly answered the reasoning question justified their answer by providing a correct

counterexample in at least 94.7% of the cases (see Table S2, sup. mat.).

When possible—i.e., in the case of problems correctly classified as invalid after a correct

first drawing—we evaluated the extent to which the second drawing diverged from the first

drawing. Note that this evaluation cannot be done in the case of valid problems that do not

present any counterexample. To do so quantitatively, we superposed the two drawings with re-
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Valid problems Invalid problems

0

50

100
% correct

2nd drawing1st drawing Reasoning

Figure 3. Percentages of correct first drawings, correct responses to the reasoning question

given a correct first drawing, and correct second drawings given a correct response to the

reasoning question and a correct first drawing, for the reasoning problems of Experiment 1.

spect to the maximum number of objects. The superposed objects constituted a fixed reference

frame (i.e., 0 transformation), with respect to which we evaluated the number of transforma-

tions applied to each remaining object (translation, rotation, uniform scaling). Finally, the

variation rate of each object in each problem was computed as the total number of transforma-

tions relative to the number of participants. The overall variation rate was equal to 46.5%. A

significant difference was found between the variation rates of objects present only in the pre-

misses and objects present in the conclusions (premisses: 29.0%; conclusion: 56.3%; t(34) =

2.59; p = 0.014; see Figure 4). For each participant, we also evaluated whether their propensity

to make changes between the first and second drawings could reflect their performance in the

reasoning task. We thus computed the overall percentage of correct responses in the reasoning

task and the overall object variation rate for each participant, and found a small correlation

between these two variables (R(21) = 0.41, p = 0.054).

3.3 Discussion

In this experiment, most of our participants were able to: (1) produce, with a high rate

of success, a correct possible representation of a geometric situation described by a set of

premisses; (2) discriminate between valid and invalid diagram-based geometric inferences;
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Premisses 
only

Conclusion

Global variation rates of objects between the two drawings   

0.0

0.2

0.4

0.6

0.8

1.0

Premisses and 
conclusion

Figure 4. Global variation rates between the first and second drawings for (a) all objects,

(b) objects only present in the premisses, (c) objects present in the conclusion, for the invalid

problems of Experiment 1. Only cases with a correct first drawing, a correct response to the

reasoning question, and a correct second drawing are taken into account.

(3) produce counterexamples to invalid inferences.

The results of this experiment support the hypothesis that educated adults evaluate the

validity of diagram-based geometric inferences by searching for counterexamples. First, we

saw that participants who judged an inference as invalid after having successfully represented

the premisses almost always justified their answer by providing a counterexample. Second,

when participants provided a correct first drawing, we observed a very high level of accuracy

in classifying the problems as valid, and a significantly lower level for the invalid ones.

Our results also provide some information on how the search for counterexamples pro-

ceeds. By analyzing the differences between the first and second drawings in the case of invalid

inferences, we observed a certain level of similarity between them, the likelihood for an object

to remain identical between the two drawings being higher than 50%. This may indicate that

the search for counterexamples proceeds locally at the level of certain selected objects. We

also observed that an object was more likely to be varied between the two drawings if it was

present in the conclusion as compared to being present only in the premisses. This suggests

that an object is more likely to be selected in the local search if it is present in the conclusion.
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This may not be surprising since a counterexample is, by definition, a geometric configuration

in which the conclusion is false. Thus, for a local search to succeed, it must concern at least

one of the objects present in the conclusion.

On the basis of these results, we hypothesize that the search for counterexamples pro-

ceeds by varying mentally certain object(s) in the diagram, according to the premisses they

are subject to, and with the objective of falsifying the conclusion of the considered inference.

In the following, we call these local procedures scanning operations. We note here that such

scanning operations are different from the image scanning studied by Kosslyn, Ball, and Reiser

(1978) that concerns the scanning of static visual images, while the scanning operations we

hypothesize concern the scanning of possibilities to place one or several geometric objects in a

geometric diagram, thus going beyond the information contained in the diagram. The scanning

operations have a similar character to the augmented diagram inferences of Mumma (2012) in

which the objects varied in diagrammatic inferences are those added by geometric constructions

(on geometric constructions, see also Matsuda & VanLehn, 2004).

4 Experiment 2

The results of Experiment 1 led us to propose that searching for counterexamples to

diagram-based geometric inferences proceeds through scanning operations. As an illustration

of this procedure, suppose that one is searching for a counterexample to inference I2 on the

basis of the diagram displayed in Figure 2(b). One could proceed by carrying out a scanning

operation with line L or with circle α . In the first case, the scanning operation would consist in

mentally varying line L, according to the constraint that point A remains on L, and with the ob-

jective of placing L so that it does not intersect circle α . This scanning operation is illustrated

in Figure 5(a). In the second case, the scanning operation would consist in varying circle α ,

with the constraint that point A remains outside α , and with the objective of placing α so that

it does not intersect line L. This scanning operation is illustrated in Figure 5(b). In both cases,

these scanning operations yield a counterexample to the inference I2 by varying only one of the

objects involved in the inference while the others remain fixed.

If adults evaluate the validity of diagram-based geometric inferences by searching for



COUNTEREXAMPLE SEARCH IN DIAGRAM-BASED GEOMETRIC REASONING 16

⇒ ⇒

(a) (b)

Figure 5. Two examples of scanning operations starting with the diagram displayed in Figure

2(b). (a) Scanning operation with line L. (b) Scanning operation with circle α .

counterexamples, then we would expect that manipulating the difficulty of finding counterex-

amples in the diagram through scanning operations would affect their performance in detecting

invalid inferences. To test this prediction, we introduced a set of scanning problems that con-

sisted in answering a reasoning question about an object introduced on a pre-existing diagram

and subject to one or more constraints. We particularly investigated the effect on reasoning

performance of two different metric manipulations of the provided diagram: variation of the

counterexample density, and variation of the counterexample distance. The former is the sub-

ject of this Experiment 2, while the latter is the subject of Experiment 3.

We define counterexample density as the proportion of counterexamples obtained when

considering all possible ways of placing the object to which the reasoning question applies in

the diagram according to the constraints. The counterexample density can thus be viewed as the

probability to “hit” a counterexample by placing randomly the object in the diagram according

to the constraints. Figure 6 illustrates the notions of counterexample density in the case of in-

ference I2 when considering a scanning problem with line L. When inferences are accompanied

by diagrams of high counterexample density, we expect reasoning to be facilitated.

4.1 Method

4.1.1 Design and Materials. In this experiment, we presented 12 invalid scanning

problems, that were seen once with a diagram of low counterexample density, and once with a

diagram of high counterexample density. To counterbalance the answer to the reasoning ques-

tion, we also presented 12 valid problems, seen in two different diagram conditions (see Tables

S3 and S4, sup. mat.). These 24 scanning problems were selected based on the 18 reasoning
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(a) (b)

Figure 6. Two possible diagrams in the case of inference I2. When considering a scanning

problem with line L, (a) is a diagram of high counterexample density and (b) is a diagram of

low counterexample density.

problems presented in our first experiment and 6 additional problems. They involved either 3,

4, or 5 geometric objects, equally distributed.

The 48 problems were presented to each participant in a pseudo-random order such that:

(1) the order in which the two diagram conditions were seen for each problem was properly

counterbalanced, so as to overcome an eventual effect of learning during the test; (2) it was

very unlikely for the two diagram conditions of the same problem to be presented close to each

other; (3) all the problems were presented in a different random order to each participant.

On each trial, a partial diagram was displayed at the center of the screen with ample mar-

gins around it, in a block of 300x300 pixels within a larger block of 900x500 pixels. After 3

seconds, an additional object appeared in the diagram, together with one or more premisses

expressing the constraint(s) it is subject to. The participants were given 2.5 seconds plus 500

ms per word to read the premisses and look at the diagram (see Figure 7). They were finally

prompted to answer “Yes” or “No” to a question about the object that last appeared. The

reasoning time was measured as the delay between the appearance of the question and partic-

ipants’ click on the chosen response box. If they failed to answer within 10 seconds, the test

automatically switched to the next problem.

To familiarize the participants with the task, the experiment was preceded by two training

series, involving a separate set of 4 problems similar to those of the main test, presented without

time limits.



COUNTEREXAMPLE SEARCH IN DIAGRAM-BASED GEOMETRIC REASONING 18

Let be a line L such that: Let be a line L such that:

point A is on line L point A is on line L

Is it necessarily the case that

line L intersects circle α?

Yes No

3s 2.5s + 0.5 × word count 10s (max)

Figure 7. The three presentation stages of each scanning problem: (1) display of a first partial

diagram; (2) addition of an object accompanied by a text describing its constraints; (3) display

of the reasoning question and response period.

The experiment was programmed in HTML, CSS, and JavaScript using the jsPsych library

(de Leeuw, 2015). It was run online on the Amazon Mechanical Turk platform. We used JATOS

(Lange, Kühn, & Filevich, 2015) on the server side to manage participants and collect data.

4.1.2 Procedure. The participants were tested online. They were told to place them-

selves in a quiet environment because the test would require their full attention. They were also

asked not to do anything else in their web browser in parallel with the test. The experiment

was administered in French. To participate, one had to successfully pass a French language test

composed of 8 reading and comprehension questions. The participants were then instructed

that they would have to answer questions about various geometric situations. They were asked

to provide their responses as quickly as possible, and were told that each trial would time out

after 10 seconds.

4.1.3 Participants. 26 French speaking adults (8 females, age range: 20-53, mean:

35.6) were recruited on the Amazon Mechanical Turk platform with the two followings worker

qualifications: “HIT Approval Rate (%) for all Requesters’ HITs greater than 95” and “Location
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is France” or “Location is Canada”. If they carried out the test in its entirety, they received

$2 for their participation. According to the Declaration of Helsinki (2013), all participants

provided informed consent prior to the experiment.

4.1.4 Statistical Analysis. Data analysis was performed using the software environ-

ment R (R Core Team, 2018) and the software RStudio (RStudio Team, 2016). We first identi-

fied and excluded from further analyses those among the 26 participants exhibiting particularly

low accuracy in their responses. The exclusion criterion was set so that the mean accuracy

would not be smaller than the group average minus 2 standard deviations. 1 participant with

only 39% correct answers was excluded. In our analyses, classical t-tests and anovas were used

to compare average values. When focusing on invalid problems, we used the R package lme4

to model reasoning time values with a mixed-effect linear model, and accuracy with a mixed-

effect logistic regression using binomial functions. Note that, below, we systematically report

corrected sample standard deviation.

4.2 Results

We assessed the effect of counterexample density on invalid problems (valid problems do

not present any counterexample). Overall, participants answered correctly to 66.0 ± 9.7 % of

the invalid scanning problems, in 4.48 ± 0.43 secs. On average, for the problems presented

with a diagram of low counterexample density, participants answered 64.5± 9.8 % correctly in

4.69 ± 0.42 secs. For the problems presented with a diagram of high counterexample density,

participants answered 67.6 ± 9.6 % correctly in 4.30 ± 0.44 secs (Figure 8). While coun-

terexample density did not significantly affect participants’ accuracy (paired t-test: t(24) = 1.5,

p = 0.15), we verified that it impacted their reasoning time (paired t-test: t(24) = 2.47 p =

0.02). To verify that this effect was not due to learning effects throughout the experiment,

we then evaluated a mixed-effects linear model of reasoning time with the diagram condition

(low/high counterexample density) and the order of presentation (to account for any learning

effect throughout the experiment) as fixed effects. Note that we did not include the problems in

this model after verifying that this factor did not have any significant effect on reasoning time

(ANOVA: F(1,11) = 1.23, p = 0.11). Participants were modeled as a random effect. This model
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revealed significant main effects of both the diagram condition (F(1,21) = 7.03, p = 0.015) and

the order of presentation (F(1,21) = 16.2, p < 0.001), but no interaction between these two fac-

tors (p = 0.88). Thus, participants responded faster for the problems presented with a diagram

of high counterexample density.
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Figure 8. Percentages of correct responses and reasoning times (s) for the 12 invalid scanning

problems of Experiments 2 in the two diagram conditions of “high” and “low”

counterexample density.

4.3 Discussion

This experiment indicated that increasing the counterexample density of the diagram im-

proved the reasoning performance on invalid problems, which was to be expected if a search

for counterexamples through scanning operations underlies the reasoning. It also suggested

that scanning operations are sensitive to metric aspects of the diagram, since the two diagrams

of low and high counterexample density associated to each invalid problem were always topo-

logically equivalent but metrically different.
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5 Experiment 3

Another possible way to manipulate the difficulty of finding counterexamples in the di-

agram is in terms of counterexample distance. We define counterexample distance as the

distance between the diagram and the “closest” counterexample (see Figure 9). Distance is

measured here in terms of the traditional geometric transformations of translation, rotation,

and uniform scaling as applied to the object of the considered scanning problem (e.g., line L in

Figure 9). In this third experiment, we thus evaluated the effect of counterexample distance on

adults’ performance in scanning problems. In the cases of small counterexample distance, we

expect participants to perform better.

(a) (b)

Figure 9. Two possible diagrams in the case of inference I2. When considering a scanning

problem with line L, then (a) is a diagram where L stands close to the closest counterexample

and (b) is a diagram where L stands far from the closest counterexample.

5.1 Method

5.1.1 Design, Materials, Procedure, and Statistical Analysis. In this experiment, the

participants were tested on the same 24 scanning problems as in our second experiment (see

Table S5 and S6, sup. mat.). The procedure and statistical analysis were also the same as in

the previous experiment, with the only exception that the images for the invalid problems were

here manipulated in terms of counterexample distance. In other words, the 12 invalid problems

were seen once under a configuration close to the closest counterexample, and once under a

configuration far from the closest counterexample (see Table S6, sup. mat.).
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5.1.2 Participants. We recruited a new group of 33 French speaking adults (15 fe-

males, age range: 19-54, mean: 31.4) on the Amazon Mechanical Turk platform with the same

worker qualifications as before. We made sure that these participants did not already take part

in the previous experiment. If they carried out the test in its entirety, they received $2 for

their participation. According to the Declaration of Helsinki (2013), all participants provided

informed consent prior to the experiment.

5.2 Results

To assess the effect of counterexample distance, we again looked at invalid problems since

valid problems do not present any counterexample. Overall, the participants answered correctly

to 68.9 ± 8.2 % of the invalid problems, in 4.46 ± 0.39 secs. On average, when the distance

to the closest counterexample(s) was small, participants answered 73.5 ± 7.8 % correctly in

4.48 ± 0.39 secs. When the distance to the closest counterexample(s) was large, participants

answered 64.4 ± 8.5 % correctly in 4.44 ± 0.40 secs (see Figure 10). This time, no significant

effect of the counterexample distance was found on reasoning times (paired t-test: t(32) = 0.41,

p = 0.69). However, a difference on accuracy was observed between the two diagram conditions

(paired t-test: t(32) = 2.80, p = 0.009). To verify that this effect was not due to learning effects

throughout the task, we performed a logistic regression with the diagram condition (close/far)

and the order of presentation (first/second) as fixed effects and participants as random effect.

This model revealed a significant effect of the diagram condition (z = 2.15, p = 0.03), and

no effect of the order of presentation (z = 0.57, p = 0.57). These results thus revealed that

participants responded significantly more accurately under the condition “close”.

5.3 Discussion

This experiment suggested that decreasing the distance between the object to which the

reasoning question applied and the closest counterexample in the diagram improved the perfor-

mance on the invalid problems. Similarly to Experiment 2, this was to be expected if a search

for counterexamples through scanning operations underlies the reasoning. As in Experiment

2, the manipulation in terms of counterexample distance was a metric one. Experiment 3 thus

provides further evidence that scanning operations are sensitive to metric aspects of the dia-
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Figure 10. Percentages of correct responses and reasoning times (s) for the 12 invalid

scanning problems of Experiments 3 in the two diagram conditions “close” and “far”.

gram. We also observed here again that people can reach a high level of accuracy on scanning

operations under a relatively short time constraint.

Finally, we note that manipulating counterexample distance affected the accuracy while

manipulating counterexample density in Experiment 2 affected the reasoning time. This is

compatible with the further hypothesis that scanning operations are performed locally and in

parallel. Indeed, if scanning operations proceed locally, in a limited range around the initial

position of the object, a counterexample is more likely to be hit if the object stands closer to the

closest counterexample, thus resulting in a better accuracy. In addition, if the results of multiple

scanning operations are evaluated in parallel, then between two configurations with the same

relative distance to the closest counterexample, a counterexample is more likely to be hit faster

in the case of high counterexample density, thus resulting in a shorter reasoning time.

6 General Discussion

In this study, we exposed adult participants to various diagram-based geometric inferences.

In Experiment 1, we verified that they were able to carry out such inferences independently of

any math training, and we revealed counterexample search as a potential mechanism of infer-
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ential validity evaluation. On the basis of the diagrams that subjects produced, we hypothesized

that the search for counterexamples proceeds through scanning operations that consist in vary-

ing mentally certain objects in the diagram, under the constraints expressed by the premisses,

and with the objective of falsifying the conclusion. The results of Experiments 2 and 3 then

indicated that scanning operations were sensitive to two kinds of metric manipulations of the

diagram, as increasing the counterexample density or decreasing the counterexample distance

in the diagram significantly improved subjects’ reasoning performance.

First, we note that our participants almost always produced a diagram that correctly de-

picted the premisses. This suggests that, in our experiment, even naive reasoners were able to

translate the information contained in sentences into a drawing. Noticeably, we observed some

topological preferences among participants in diagram production (Table S2, supplementary

materials). This result is in line with a phenomenon already described in spatial reasoning re-

search (Ragni & Knauff, 2013). However, contrary to what has been previously observed in the

production of quadrilaterals (Koedinger, 1998), the diagrams produced were not overly specific

metrically.

Moreover, subjects who were able to produce a correct representation of the premisses and

correctly judged an inference as invalid were almost always able to produce a counterexample

to it. However, this differs from the results of most studies on reasoning and counterexample

search in mathematics. For example, Koedinger (1998) has investigated the capacity of high-

school students following a geometry course to reason about kites—quadrilateral figures ABCD

where AB and AD are congruent to CB and CD, respectively. Students were asked to produce

diagrams and formulate potential conjectures (e.g., about the diagonals), and then to find a

proof or a counterexample to the formulated conjectures. Koedinger observed that students had

trouble understanding the proper dialectic between deductive proofs, examples, and counterex-

amples. Similarly, when mathematics educators investigated how students use and understand

counterexamples in various mathematical areas such as geometry and algebra (Buchbinder &

Zaslavsky, 2019; Zaslavsky & Ron, 1998), number theory (Alcock & Inglis, 2008; Zazkis &

Chernoff, 2008), and analysis (Ko & Knuth, 2009; Weber, 2009), they showed that one of stu-

dents’ main difficulties was to understand the proper role of examples and counterexamples in
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proving and refuting mathematical claims. In our first experiment, participants from various

backgrounds exhibited a remarkably high performance in our task, thus suggesting (1) a cer-

tain mastery of the notions of examples and counterexamples in the context of diagram-based

geometric reasoning, and (2) that producing counterexamples is not reserved to math experts.

The difference with the above mentioned studies may simply be due to the fact that we never

explicitly asked for examples or counterexamples, but simply asked for illustrations.

Another well known context in which people have difficulties to find counterexamples is

the Wason ’s (1968) selection task. In this case, reasoners’ capacity to identify potential coun-

terexamples can increase drastically when the reasoning problem is formulated with concrete

content (see, e.g., Griggs & Cox, 1982; Johnson-Laird, Legrenzi, & Legrenzi, 1972). Although

the reasoning problems considered here concern abstract geometric objects and relations, the

presence of diagrams supporting participants’ reasoning could have helped them representing

the abstract content of the problems in a more concrete way, thus making it easier to identify

counterexamples. Alternatively, some researchers (see, e.g., Cheng & Holyoak, 1985; Sten-

ning & van Lambalgen, 2008) have also argued that the difficulty of the Wason’s selection task

depends on whether the rule to be evaluated is interpreted in a descriptive or a deontic way. A

descriptive interpretation means that the rule is interpreted as a material implication—e.g., “if

a card has a vowel on one side, then it has an even number on the other”—while a deontic in-

terpretation means that the rule is interpreted as involving a modal component saying what one

can, should, or must do—e.g., “if one is to drink alcohol, then one must be over eighteen”. It is

possible that our participants have interpreted our geometric reasoning tasks as asking what can

and cannot be drawn in a given geometric situation, thus introducing such a modal component.

For instance, one may interpret inference I1 as asking whether one can draw a line that goes

through a point inside a circle without intersecting the circle. What facilitates counterexample

identification in the Wason’s selection task may then explain the rather good performance in

counterexample production observed in Experiment 1. Further work would be necessary to

determine whether performance on geometric reasoning is affected by varying the content of

geometric problems along an abstract-concrete scale and/or by manipulating possible descrip-

tive vs deontic interpretation of the task.
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In the context of logical reasoning, two studies in the mental model tradition (Bucciarelli

& Johnson-Laird, 1999; Johnson-Laird & Hasson, 2003) have shown that people can construct

counterexamples to refute inferences, but only to a certain extent. In a task where participants

were asked to evaluate syllogistic inferences and to help themselves by constructing pictorial

representations of the premisses using cut-out shapes, Bucciarelli and Johnson-Laird (1999)

reported that participants engaged in the construction of alternative models for invalid infer-

ences in only 48% of the cases, but noted that participants may have in some trials constructed

alternative models mentally without externalizing them. In another task where participants

were asked to evaluate sentential inferences and to write down a justification for their an-

swers, Johnson-Laird and Hasson (2003) reported that participants used counterexamples as

a justification for judging an inference as invalid in only 51% of the cases. Here again, those

percentages are significantly lower than the one we observed in our first experiment. We can

imagine that diagram-based geometric reasoning offers a less diverse variety of strategies to

refute inferences in comparison to syllogistic reasoning (Bucciarelli & Johnson-Laird, 1999)

and sentential reasoning (Johnson-Laird & Hasson, 2003). Our results suggest that the diagram

supports a strategy that consists in decomposing the complex task of evaluating the validity of a

geometric inference into scanning operations that proceed by varying mentally certain objects

in the diagram while keeping the other objects fixed. We saw in Experiment 1 that subjects

were more likely to carry out scanning operations on the objects present in the conclusion as

compared to those only present in the premisses. This would suggest that the search proce-

dure for counterexamples involves strategic decisions regarding the scanning operation(s) to be

carried out. Characterizing these strategic decisions requires further investigation, for instance

by recording how they use paper and pencil and/or by asking them to externalize their reason-

ing process through talk aloud protocols. This could also provide information on the order in

which scanning operations are carried out, which may reveal preference patterns in the ordering

of operations as previously observed in geometric analogy tasks (Novick & Tversky, 1987).

As mentioned earlier, the scanning operations we described in this study are different from

the image scanning studied by Kosslyn et al. (1978) in that they do not concern static visual

images but rather the possibilities to place one or more geometric objects, under certain con-
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straints, in a geometric diagram. They are also different from the transformations on mental

models investigated and theorized in the mental model theory approach to spatial relational rea-

soning (Goodwin & Johnson-Laird, 2005; Knauff, 2013; Ragni & Knauff, 2013) in that they are

sensitive to metric information while mental models and the transformations thereof are only

sensitive to the abstract or qualitative information provided in the premisses. The precise cog-

nitive nature of the scanning operations though remains unknown. Our results are compatible

with the hypothesis that scanning operations rely on object-based mental transformations (Za-

cks & Michelon, 2005) such as mental rotation (Shepard & Cooper, 1982; Shepard & Metzler,

1971), mental translation (Larsen & Bundesen, 1998), and mental uniform scaling (Besner &

Coltheart, 1976; Bundesen & Larsen, 1975) which are all sensitive to metric information. Other

hypotheses concern a potential role for visual routines (Ullman, 1984) and/or mental simulation

of a physical kind (Hart et al., 2018). Further investigations will be necessary to distinguish

between these hypotheses.

Our study focused on individual diagram-based geometric inferences, but many questions

remain about the integration of such inferences in more complex geometric proofs of the kind

found in Euclid’s Elements. These proofs proceed through a combination of text and diagram,

where the text mostly supports inferences about metric information, while the diagram sup-

ports inferences about topological information (Manders, 2008; Mumma, 2006). Thus one

question is to evaluate the impact of the metric versus topological content on the reasoning

process. The comparison between the high performance that our participants reached on topo-

logical inferences and the difficulties exhibited by students on metric inferences about kites in

Koedinger’s (1998) study may suggest that this distinction matters for counterexample search.

Moreover, when Koedinger and Anderson (1990) investigated and modeled geometry proof

search, they noticed that different types of inferences were treated differently in the abstract

planning process—e.g., experts were more likely to skip algebraic inferences. Consequently,

building on the work by Koedinger and Anderson (1990), and in particular examining whether

text-based and diagram-based inferences are processed differently, could eventually shed light

on the cognitive processes underlying geometric proof search where inferences concern both

metric and topological information as in Euclid’s proofs.
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Finally, geometry is an abstract theory of space, but points, lines, circles and their relations

are commonly used in concrete contexts when people reason with different kinds of visuospatial

displays (diagrams, graphs, maps) or communicate and think in navigational contexts (Hegarty

& Stull, 2012; Newcombe, 2018; Tversky, 2005). For instance, deductive geometric reason-

ing is essential to infer information that goes beyond what is depicted in a map. This is often

necessary in route planning when one is wondering, say, whether a location can be reached

without crossing a river or a mountain, or without having to enter into certain areas. As another

example, let assume that you are at a position (or point) inside the Paris ring (i.e., a circle).

Can you walk along a straight path (or line) indefinitely without crossing the ring? No. Now

what if you are outside the Paris ring? Yes, and it is enough to think about a road between

Bordeaux and Lyon to invalidate the above conclusion. The present study and its focus on

counterexample search may thus provide a rather new approach to the question of deductive

reasoning with topological relations between spatial entities such as positions, paths, roads,

borders, regions, etc. More generally, the two notions of counterexample density and coun-

terexample distance that we introduced in this study, and that affected reasoning performance,

could ultimately prove useful to study other forms of reasoning. Indeed, our capacity to recog-

nize any form of deduction as invalid could plausibly depend on the ratio of counterexamples

in our semantic representation of the domain of reasoning or on the distance between the clos-

est counterexample and the situation initially considered. Thus, studying the psychology of

geometric reasoning is not only necessary to better understand how we think and reason about

the geometric properties of our spatial environment and our spatial artefacts, it also provides a

privileged context to investigate counterexample search in deductive reasoning.
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