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Abstract

Mathematical proofs are not sequences of arbitrary deductive steps—each de-
ductive step is, to some extent, rational. This paper aims to identify and
characterize the particular form of rationality at play in mathematical proofs.
The approach adopted consists in viewing mathematical proofs as reports of
proof activities—i.e., sequences of deductive inferences—and in characterizing
the rationality of the former in terms of that of the latter. It is argued that
proof activities are governed by specific norms of rational planning agency, and
that a deductive step in a mathematical proof qualifies as rational whenever
the corresponding deductive inference in the associated proof activity figures
in a plan that has been constructed rationally. It is then shown that mathe-
matical proofs whose associated proof activities violate these norms are likely
to be judged as defective by mathematical agents, thereby providing evidence
that these norms are indeed present in mathematical practice. We conclude
that, if mathematical proofs are not mere sequences of deductive steps, if they
possess a rational structure, it is because they are the product of rational
planning agents.
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1 Introduction

On the traditional view, a mathematical proof 1 is a sequence of deductive steps, the

only requirement being that each deductive step be valid. Yet, several leading math-

ematicians, who also entertain philosophical interest in the methodological issues of

their discipline, have pointed out that there is more to mathematical proofs. Henri

Poincaré and Saunders Mac Lane are cases in point when they wrote:

A mathematical demonstration is not a simple juxtaposition of syllo-

gisms; it consists of syllogisms placed in a certain order, and the order

in which these elements are placed is much more important than the

elements themselves. [Poincaré 1908, p. 49]

A proof for a given theorem is not a haphazard collection of individual

steps, taken arbitrarily one after another, as the classical logic might

easily lead us to believe. On the contrary, there is some definite reason

for the inclusion of each one of these steps in the proof; that is, each

individual step is taken for some specific purpose. [Mac Lane 1935,

p. 125]

So what exactly is missing from the traditional picture? Answering this question

would help advance our understanding of the nature of mathematical proofs in

mathematical practice.2 The aim of this paper is to address this issue by identifying

what this missing element might be and by proposing a possible characterization of

it.3

1Throughout this paper, we will use the term ‘mathematical proof’ to refer to proofs in ordinary

mathematical practice.

2This is currently one of the main issues on the research agenda of the philosophy of mathe-

matics. For an overview of this literature, see Hamami and Morris [2020, section 4.1] and Macbeth

[2021] as well as the references cited therein.

3Of course, this is not to suggest that providing such a characterization would exhaust the
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One way of making sense of Poincaré’s and Mac Lane’s remarks is to recognize

that proofs in mathematical practice are the products of rational agents pursuing

specific epistemic goals. From this perspective, a written mathematical proof ap-

pears as a report of a successful sequence of epistemic actions—namely deductive

inferences—which have been taken towards an epistemic goal—namely establishing

a given mathematical proposition—potentially under certain constraints. In this

respect, a mathematical proof is analogous to a travel diary in which an agent has

recorded the successful sequence of moves that brought her from her starting point

to her final destination. Now, if we characterize a travel diary as a “simple jux-

taposition” or an “haphazard collection” of moves, then surely we miss something

essential. The reason is that a journey is not a sequence of arbitrary moves, oth-

erwise we would very rarely reach our final destination. Rather, we would expect

that each move was the result of a rational decision by the agent who undertook

them. The exact same observation holds for mathematical proofs. A mathematical

proof is not the report of a sequence of arbitrary deductive inferences, otherwise we

would very rarely succeed in proving the mathematical propositions we intend to

establish. Rather, we would expect that a mathematical proof reports a sequence

of rational epistemic actions directed towards the goal of establishing the mathe-

matical proposition at hand. This may explain why Poincaré and Mac Lane reject

the idea that a mathematical proof is a “simple juxtaposition” or an “haphazard

collection” of deductive steps.

The perspective just sketched suggests one possible way to get at what is missing

in the traditional view, namely to characterize what it means for a deductive step

in a mathematical proof to qualify as rational.4 If we consider that a mathematical

proof is a report of what we will call a proof activity—i.e., a sequence of deductive

question of the nature of mathematical proofs in mathematical practice.

4This is in direct line with Mac Lane [1935, section 5] who suggests that there is always a

“reason” behind each deductive step of a mathematical proof.
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inferences—then the task boils down to characterizing what it means for a deductive

inference in a proof activity to qualify as rational. In other words, the task is to

identify the norms of rationality that govern a certain type of action in a certain

type of activity. In previous work [Hamami and Morris 2021], we have provided an

analysis of proof activities and have argued that their realization by human agents

with limited cognitive capacities requires a form of planning agency as theorized by

Michael Bratman [1987]. Building on this analysis, we will propose in this paper that

deductive inferences in proof activities are governed by norms of planning rationality.

We will then argue that this yields a plausible analysis of what Poincaré and Mac

Lane consider to be missing from the traditional view of mathematical proof.

This paper is structured as follows. In section 2, we introduce the notion of proof

activity and argue that the rationality of deductive steps in mathematical proofs

can be characterized in terms of the rationality of deductive inferences in proof

activities. In section 3 we argue that proof activities require a kind of planning

agency and spell out the core components of our account of such agency. Then, in

section 4, we identify the norms of planning rationality governing proof activities

and argue that these norms allow us to characterize the rationality of deductive

steps in mathematical proofs. Sections 5 and 6 provide evidence that these norms

are at play in mathematical practice by showing that proofs whose associated proof

activities violate them are judged as defective by practitioners. Section 7 concludes

the paper with a discussion of the rational structure of mathematical proofs, a notion

introduced by Mac Lane [1935, p. 125] which, we suggest, can be generalized to other

kinds of mathematical developments.

2 Mathematical Proofs and Proof Activities

The term mathematical proof usually refers to the written mathematical proofs

commonly found in mathematical textbooks, articles, and monographs. As such,

a mathematical proof is a static, agent-free object which consists of a sequence of
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deductive steps. But as noted by several philosophers and logicians [see, e.g., Sund-

holm 2012; Boghossian 2014], the notion of deductive step has a direct counterpart

in the realm of action with the notion of deductive inference. A deductive inference

is an epistemic action that can bring an agent from one epistemic state to another,

for instance, from a state of knowing or believing the premisses to one of knowing

or believing the conclusion.

Following this line of thought, we can introduce the notion of proof activity as

the direct counterpart of the notion of mathematical proof in the realm of action.

Thus, in the same way as a mathematical proof consists of a sequence of deductive

steps, a proof activity consists of a sequence of deductive inferences. Furthermore, to

any mathematical proof is associated a given proof activity in which each deductive

inference corresponds to a deductive step in the original mathematical proof, in

such a way that the overall structure of the sequence is preserved.5 This means that

there is always an isomorphic correspondence between a mathematical proof and its

corresponding proof activity.6

As mentioned previously, a (written) mathematical proof appears, from this per-

spective, as a report of its associated proof activity. In this respect, it is analogous to

5A proof activity is thus different from the activity of searching for a proof. The latter will

involve various trials and errors, dead ends, explorations, changes of proof strategy, etc. In this

work, we are concerned with analyzing the rationality of mathematical proofs as a way of getting

at what Poincaré and Mac Lane considers to be missing from the traditional picture. We are not

concerned with analyzing the rationality of the proof discovery process, although the two issues

are intimately connected.

6Proof activities are what we take to be the object of rationality evaluation when we evaluate

the rationality of mathematical proofs. It is a technical notion that does not necessarily match the

sequence of inferences carried out by the author of the proof—because she may not have reported all

the inferences she has carried out, for instance when leaving details to the reader—nor the sequence

of inferences carried out by the reader—because she may have carried out more inferences than

the one listed in the written mathematical proof, for instance when filling in the details left to the

reader.
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other reports of past activities such as, for instance, a scientific report of a completed

experiment, or a police or newspaper report of some people’s doings. Now, we are

often led to judge the actions recorded in such reports, for instance, when a court

evaluates whether an action was legal or illegal from a police report, or a reader

evaluates whether a politician’s actions were rational or irrational from a newspa-

per article. In all these cases, we are judging a particular action, in a particular

activity, as carried out by a particular agent. Our proposal is that this is exactly

what happens when we judge the rationality of a deductive step in a mathematical

proof: we are judging the rationality of a deductive inference, in a proof activity, as

carried out by a mathematical agent. In analyzing the rationality of mathematical

proofs along these lines, we are then following John Broome [2010, 2013] in consid-

ering the rationality of mathematical proofs to be derivative from the rationality of

mathematical agents:

The word ‘rationality’ often refers to a property—the property of being

rational. This property may be possessed by people, and also by beliefs,

acts, conversations, traffic schemes and other things. I shall concentrate

on the rationality of people. The rationality of other things is derivative

from the rationality of people. [Broome 2010, p. 285]

These considerations can be summed up in the following characterization:

A deductive step S at stage s in a mathematical proof P is rational

⇔

It is rational for a mathematical agent to carry out the deductive inference IS

at stage s in the proof activity AP ,

where IS and AP are the deductive inference and the proof activity corresponding

to the deductive step S and the mathematical proof P . If we are to specify this

characterization further, that is, to specify what it means for a deductive inference
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in a proof activity to qualify as rational, we then need a precise conception of the

kind of agency involved in proof activities. This is the issue that we now turn to.

3 Planning Agency in Proof Activities

Proof activities are always directed towards a specific goal, namely to establish the

mathematical proposition at hand. They are also temporally extended in the sense

that each deductive inference stands in a particular relation to the inferences that are

prior and posterior to it in the activity, that is, each deductive inference is inscribed

within the overall temporal structure of the activity. Now, as noted by Michael

Bratman [1987], the realization of goal-directed and temporally extended activities

for cognitively limited beings like us most often requires a form of planning agency.

In Hamami and Morris [2021], we have provided an account of planning agency in

proof activities based on Bratman’s theory of planning agency.7 This account was

obtained by specifying the notions of intention, practical reasoning, and plan in

the context of proof activities. In this section, we recall the main elements of our

account.

3.1 Intentions in Proof Activities

In Bratman’s theory of planning agency, intentions are the building blocks of plans.

For instance, your plan to spend a week in New York during the summer is or will

be composed of several intentions regarding how you will get there, where you will

stay, what you will visit, etc. Similarly, your plan to prove a given mathematical

proposition is or will be composed of several intentions to prove a number of other

mathematical propositions. As it turns out, intentions in the context of proof activ-

7In this previous work, our aim was to provide a precise notion of plan for mathematical

proofs. It is very common in mathematical practice to refer to the plan of a proof. This notion of

plan was also identified by Mac Lane [1934, 1935] as a key element in analyzing the structure of

mathematical proofs.
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ities always take the same form, namely one always intends to show—equivalently,

to prove, to establish—a given mathematical proposition from other mathematical

propositions. In our account, we refer to them as proving intentions which we denote

using the following sequent notation:

P1, . . . , Pn ⇒ C,

where P1, . . . , Pn and C are placeholders for ordinary mathematical propositions—

P1, . . . , Pn and C are referred to as the hypotheses and the conclusion of the consid-

ered proving intention. For example, if a mathematics student intends to prove the

Intermediate Value Theorem as an exercise, her proving intention will be written as:

f : [a, b]→ R is a continuous function ⇒ f takes on each value between f(a) and f(b),

and if a research mathematician intends to show that Goldbach’s conjecture is true,

her proving intention will be written as:

k is an even number greater than or equal to 4 ⇒ k = p+ q where p, q are prime.

We then introduced a further distinction between proving intentions of type ‘to

show’ and proving intentions of type ‘to infer’. The difference is the following: a

proving intention of type ‘to show’ cannot be fulfilled directly and so will always

have to be turned into further proving intentions; a proving intention of type ‘to

infer’ is an intention to carry out a deductive inference and so can be fulfilled directly

by actually carrying out the considered inference, i.e., by performing an action. A

proving intention P1, . . . , Pn ⇒ C of type ‘to show’ should be read as the intention

to show C from [P1, . . . , Pn],

while a proving intention of type ‘to infer’ should be read as the intention

to infer C from [P1, . . . , Pn].
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Proving intentions of types ‘to show’ and ‘to infer’ constitute the elementary com-

ponents of plans for proof activities.

3.2 Practical Reasoning in Proof Activities

Plans are built over time through practical reasoning. If you intend to spend a

week in New York during the summer, you will then be led to reason from this

initial intention to more specific intentions regarding the mode of transport to adopt,

the company to travel with, the exact time to depart, etc. Similarly, at the very

beginning of a proof activity, one always starts with the proving intention to establish

the mathematical proposition at hand,8 which is then turned into more specific

proving intentions as the proof activity proceeds. In the context of proof activities,

practical reasoning consists then in reasoning from a proving intention to one or

more proving intentions arranged in a subplan. This process is best illustrated by

some examples. Suppose that you intend to show that a given relation ∼ is an

equivalence relation on a set S from some propositions P1, . . . , Pn. One possible way

to proceed is to reason from this intention to the following subplan:

To show that ∼ is an equivalence relation on S, from [P1, . . . , Pn]:

1. Show ∼ is reflexive, from [P1, . . . , Pn],

2. Show ∼ is symmetric, from [P1, . . . , Pn],

3. Show ∼ is transitive, from [P1, . . . , Pn],

4. Infer ∼ is an equivalence relation, from ∼ is reflexive

and ∼ is symmetric

and ∼ is transitive.

In most cases, there will be several different ways in which you could transform a

8By contrast, in the activity of searching for a proof, this initial proving intention may change

as the proof search proceeds since one may be led to reformulate the theorem one intends to prove,

as famously shown by Lakatos [1976].
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proving intention in the course of a proof activity. For instance, if you intend to

show that ∀nH(n) where n ranges over the natural numbers, then you can proceed

by mathematical induction, in which case you will produce the following instance of

practical reasoning:

To show ∀nH(n), from [P1, . . . , Pn]:

1. Show H(0), from [P1, . . . , Pn],

2. Show ∀p(H(p)→ H(p+ 1)), from [P1, . . . , Pn],

3. Infer ∀nH(n), from H(0) and ∀p(H(p)→ H(p+ 1)).

But you can also proceed by showing that H(n) holds for both the odd and the even

numbers:

To show ∀nH(n), from [P1, . . . , Pn]:

1. Show ∀nH(2n), from [P1, . . . , Pn],

2. Show ∀nH(2n+ 1), from [P1, . . . , Pn],

3. Infer ∀nH(n), from ∀nH(2n) and ∀nH(2n+ 1).

Of course, practical reasoning in proof activities can be much more complicated,

involving for instance long chains of trials and errors before a successful subplan can

be reached.9

3.3 Plans in Proof Activities

In Hamami and Morris [2021], we defined the notion of plan for proof activities as

follows: an agent’s plan for a proof activity is an ordered tree10 such that (1) each

node is a proving intention, (2) the root is the proving intention corresponding to

the theorem at hand, and (3) each set of ordered children of a given parent node

9See Hamami and Morris [2021] for a detailed analysis of several examples of practical reasoning

in proof activities at different levels of complexity.

10In the mathematical sense of the term: an ordered tree is a rooted tree where each node comes

equipped with an ordering of its children.
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is a subplan that has been obtained from the parent node through an instance of

practical reasoning. When an agent executes her plan for a proof activity, she will

then be led to the actual realization of the proof activity, i.e., to the actual carrying

out of a sequence of deductive inferences. This is directly analogous to what happens

when an agent executes her traveling plan: she is led to the actual realization of

the traveling activity, i.e., to the actual performance of a sequence of moves. As we

shall now see, proof activities are subject to specific norms of rationality relative to

the planning agency that gives rise to them.

4 Norms of Rationality for Proof Activities

Recall that our strategy to get at what is missing from the traditional picture of

mathematical proof is to characterize what it means for a deductive step in a math-

ematical proof to qualify as rational. As we discussed earlier, this boils down to

characterizing what it means for a deductive inference in a proof activity to qualify

as rational, that is, to identifying the norms of rationality governing deductive in-

ferences in proof activities. Now, deductive inferences in proof activities are entirely

determined by the planning agency that gives rise to them since a proof activity is

the result of the execution of its underlying plan. Whether a deductive inference in

a proof activity qualifies as rational depends, then, on the potential rationality of

the underlying planning agency. This means that the norms of rationality governing

deductive inferences in proof activities are directly inherited from the norms of ra-

tionality governing the underlying planning agency. In this section, we will identify

the latter and use them to formulate the former.

4.1 Norms of Rationality for Planning Agency

Bratman [1987, section 3.2] identifies two norms of rationality for plans that he coins

consistency and means-end coherence:
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Consistency: Rationality requires of the agent that her plans be strongly consistent,

that is, internally consistent and consistent with her beliefs: assuming that all

her beliefs are true, it must be possible for her plans to be successfully executed.

Means-End Coherence: Rationality requires of the agent that her plans be filled

in with subplans whenever she considers it necessary, at the present time, to

ensure that her plans can be successfully executed.

Because plans are often specified further through practical reasoning, to the two

norms of rationality for plans correspond two norms of rationality for practical

reasoning that we will refer to as consistency∗ and means-end coherence∗. These

norms exert rational pressure on practical reasoning to maintain the consistency

and means-end coherence of the agent’s plans over time.

The norm of consistency∗ stipulates that, whenever an agent specifies her plans

through practical reasoning, she should do so in such a way that the resulting plans

still satisfy the norm of consistency:

Consistency∗: Rationality requires of the agent that a subplan integrated into her

plans as a solution to a problem posed by one or more of her prior intentions

preserves the strong consistency of her plans.

To return to the New York trip example, this means that when you decide which

means of transport to adopt to go to the airport, you should aim for a solution that

results in a plan that, to your beliefs, can be successfully executed. It would be

irrational, for instance, to intend to take a train that you believe would not stop at

the airport, or would not leave you enough time to reach the gate before it closes.

The norm of means-end coherence∗ stipulates that the agent shall engage in

practical reasoning to specify her plans further whenever this appears to be necessary

for them to be successfully executed. This means that, at any given point in time,

the agent shall address what we will call her critical intention(s) at this time, that
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is, the intention(s) in her plans that needs to be turned into more specific intentions

at this time for her plans to be successfully executed:

Means-End Coherence∗: Rationality requires of the agent that she addresses the

problem(s) posed by her critical intention(s) at the present time.

In the New York trip example, this means that once you have decided to go by plane

and know the date and time of your flight, you must decide how to get to the airport

before it’s too late to check in and go through security. It would be irrational, for

instance, not to engage in practical reasoning to decide how to get to the airport

if it turns out to be necessary to do so at the present time to catch the flight you

intend to take.

4.2 Norms of Rationality for Planning Agency in Proof

Activities

In the particular case of proof activities, the agent’s plan is entirely generated

through practical reasoning. This is due to the fact that, at the beginning of any

proof activity, the agent’s plan is always composed of a single intention—the inten-

tion of proving the theorem at hand—and so the only possible way for the agent

to develop her plan is to engage in practical reasoning. As a consequence, whether

the agent’s plan satisfies the norms of rationality for plans depends exclusively on

whether the agent has developed her plans in accordance with the norms of ratio-

nality for practical reasoning. In other words, at any given stage of a proof activity,

the agent’s plan satisfies the norms of consistency and means-end coherence if and

only if the agent has developed her plan over time in accordance with the norms

of consistency∗ and means-end coherence∗. Thus, to specify the norms of rationality

for planning agency in proof activities, it suffices to specify the norms of rationality

governing the associated practical reasoning.
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The above norms of rationality for practical reasoning can be straightforwardly

adapted to the case of proof activities. The norm of consistency∗ says that, whenever

an agent integrates a subplan into her plans as a solution to a problem posed by

one or more of her prior intentions, she shall do so in such a way as to preserve the

strong consistency of her plans, i.e., in such a way that, to her beliefs, her updated

plans can be successfully executed. This leads to the following specification of the

norm of consistency∗ in the case of proof activities:

Consistency∗PA: Rationality requires of the agent that the integration into her plan

of a subplan obtained through practical reasoning from a problem posed by

one of her proving intentions results in a plan that, to her beliefs, can be

successfully executed.

The norm of means-end coherence∗ says that the agent shall address the problem

posed by her critical intention(s) at the current time.11 In our account of the plan-

ning agency underlying proof activities, the agent always entertains one single crit-

ical proving intention at any given stage of a proof activity. The specification of

means-end coherence∗ in the case of proof activities can then be formulated in a

straightforward way as follows:

Means-End Coherence∗PA: Rationality requires of the agent that she addresses the

problem posed by the proving intention that is critical for her at the current

stage.

4.3 Norms of Rationality for Deductive Inferences in Proof

Activities

So far, we have identified the norms of rationality for the planning agency underlying

proof activities. Since deductive inferences in proof activities are entirely determined

11Because proof activities are sequential processes, we shall talk of the ‘stages’ of a proof activity,

and talk of the current or present ‘stage’ instead of the current or present ‘time’.
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by the planning agency that gives rise to them, whether a deductive inference in a

proof activity qualifies as rational depends then exclusively on the eventual ratio-

nality of the underlying planning agency. This relation can be concretely expressed

by saying that a deductive inference at a given stage in a proof activity is ratio-

nal whenever it figures in a plan that is itself rational, that is, a plan that has

been constructed rationally. This leads to the following formulation of the norms of

rationality governing deductive inferences in proof activities:

RationalityDI∝PA: Rationality requires of the agent that her deductive inference IS

at stage s of her proof activity AP figures in a plan that she constructed

in accordance with the norms of rationality for practical reasoning in proof

activities, that is, the norms of consistency∗PA and means-end coherence∗PA.

We can now complete our characterization of what it means for a deductive step in

a mathematical proof to qualify as rational :

A deductive step S at stage s in a mathematical proof P is rational

⇔

A typical mathematical agent satisfies the norm rationalityDI∝PA when carrying out

the deductive inference IS at stage s in the proof activity AP .

This, we claim, constitutes one possible way to characterize what might be missing

from the traditional view of mathematical proofs. Why? Recall that Poincaré and

Mac Lane rejected the idea that a mathematical proof is a “simple juxtaposition” or

an “haphazard collection” of deductive steps. In other words, they contested the idea

that deductive steps in mathematical proofs are arbitrary. In the approach developed

in this paper, deductive steps in mathematical proofs are not arbitrary because

they are always the result of rational decisions. These rational decisions are to be

found in the instances of practical reasoning that led to the construction of the plan

underlying the considered mathematical proof. This is exactly the idea embedded
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into the above characterization and the norm rationalityDI∝PA: a deductive step in

a mathematical proof is rational whenever the corresponding deductive inference in

the associated proof activity figures in a plan that has been rationally constructed,

i.e., constructed using our faculty of practical reason. If this analysis is correct,

we shall then be able to find evidence that the norms of rationality identified in

this section are indeed at play in mathematical practice. The aim of the next two

sections is to assess our proposed characterization along this line.

5 Assessing the Account: Rationality Judgments and Proof

Defects

How should we assess whether the norms of rationality just identified are indeed

at play in mathematical practice? Bratman has repeatedly emphasized that the

norms of consistency and means-end coherence, as well as their counterparts for

practical reasoning, are not just “rules of thumb” [Bratman 2017, p. 26]. Instead,

an agent violating them will open herself up to charges of “critizable irrationality”

[Bratman 1987, p. 37], witnessing a “rational breakdown” [Bratman forthcoming,

p. 1]. As a consequence, if the norm rationalityDI∝PA indeed applies to deductive

steps in mathematical proofs, then a mathematical proof whose associated proof

activity violates either the norms of consistency∗PA or means-end coherence∗PA should

be judged as defective. We will now argue that this is the case in mathematical

practice.

The typical situation in which such rationality judgments occur is when the

rationality of a mathematical proof produced by an agent with expertise Ea (the

author)12 is judged by another agent with expertise Er (the reader). In mathematical

practice, mathematical agents can differ in terms of their level(s) and/or area(s) of

expertise. For instance, a student and a mathematics professor would differ at least

12In mathematical practice, proofs are often produced by groups of agents. To ease the discus-

sion, we will only consider here the single agent case.
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in terms of their level of expertise, while an analyst and a topologist would differ

at least in terms of their area of expertise. It is then a truism that the writing and

the processing of mathematical proofs is highly dependent on the expertise of the

agents involved [see, e.g., Thurston 1994, p. 175].

Since we are looking for potential violations of norms of rationality, we are inter-

ested in cases in which an agent with expertise Er would judge a deductive step in

a mathematical proof produced by an agent with expertise Ea as not rational. Al-

though mathematicians would probably not put things in these philosophical terms,

such judgments of rationality are relatively common in mathematical practice. To

see this, it suffices to reflect on how those judgments usually manifest themselves.

In ordinary life, judging an action as not rational would often lead to a form of puz-

zlement, triggering a remark of the form “I do not see why you are doing this”. This

might happen, for instance, if you see your friend searching for his car keys in the

fridge. You may then ask him why he is doing this, to which he may reply that this

is where his girlfriend hid the keys to prevent him from driving home last night after

the party. Such puzzlement is fairly common when it comes to mathematical proofs,

especially when the expertise of the reader is significantly different from that of the

author. Thus, a student might not see why her mathematics professor is taking this

particular step at this stage of the proof, in the same way as an analyst might not see

why her topologist colleague is doing this or that in the course of her proof. In such

cases, the reader will be dissatisfied with the proof which may then appear as defec-

tive to her. Importantly, this does not mean that the reader would take the author

of the proof to be irrational. A student would certainly not judge his mathematics

professor to be irrational, in the same way as an analyst would certainly not judge

his topologist colleague to be irrational. It is only from the perspective of the reader

that (some deductive steps in) the proof may not appear as rational. To refine our

initial issue, the question is then whether a mathematical proof whose associated

proof activity violates either the norms of consistency∗PA or means-end coherence∗PA
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from the perspective of a reader with expertise Er should appear as defective to this

particular reader.

What would a violation of the norm of means-end coherence∗PA amount to? In

Bratman’s theory of planning agency, the norm of means-end coherence is essentially

concerned with temporal deadlines, in the sense that, to be rational, an agent ought

to fill in her plan by a given time if she believes this to be necessary for what she

plans to do. A typical example of a violation of means-end coherence would be a

case in which you plan to go to the Rolling Stones concert next summer, you believe

that buying a ticket on the day at which they are put on sale is a necessary means

to this end, but you do not come up with any specific subplans to buy the tickets

before the next day (e.g., by going to a ticket shop or by visiting one online). In

the context of proof activities, a violation of means-end coherence∗PA would simply

mean that you never address what we have called the critical proving intention at a

given stage of a proof activity. In this case, your plan will remain incomplete and so

the execution of the plan will never lead to a successful proof activity, that is, the

corresponding mathematical proof will itself remain necessarily incomplete. Thus,

insofar as an incomplete proof is necessarily defective to the extent that it does

not establish the mathematical proposition at hand, it is relatively obvious that the

norm of means-end coherence∗PA is indeed at play in mathematical practice.

Violations of the norm of consistency∗PA are more interesting. The key observation

is that the norm of consistency∗PA depends fundamentally on the beliefs of the agent:

to be rational, any subplan to be integrated into the agent’s overall plan must result

in a plan that, to the agent’s beliefs, can be successfully executed. One consequence

of the dependence of consistency∗PA on the agent’s beliefs is that agents with different

expertise can be led to diverging rationality judgments on the same mathematical

proof. As we noted above, this is exactly what is to be expected from the point

of view of mathematical practice. A typical example of this is when the author is

using a method or technique which is not known to the reader. For instance, a
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topologist might adopt a given subplan in her proof which is just the application

of a well-known method commonly used in topology but rarely, if at all, used in

analysis. Because of her experience with the method, the topologist might believe

that the method, and so the resulting plan, has a chance to succeed, but this might

not be the case for the analyst reading the proof. In this situation, all the deductive

steps in this subplan will appear as rational to the topologist but not to the analyst.

What would a violation of the norm of consistency∗PA amount to in practice? From

the perspective of the reader of a proof, a violation of consistency∗PA occurs whenever

the reader has no reason to believe that a given subplan in the overall plan of the

corresponding proof activity can be successfully executed. In our account, the agent

should then judge all the deductive inferences figuring in this subplan as defective.

That this is indeed the case is better seen by examining some concrete examples.

In the next section, we will analyze in detail an example originally proposed and

discussed by Pólya [1949].

6 Assessing the Account: A Concrete Example

In this section, we analyze a proof of Carleman’s inequality due to Pólya [1925].

Although the proof is perfectly correct, Pólya [1949] points out that many readers

will find it unsatisfactory.13 Here we argue that, if the proof appears defective

to many readers, it is because those readers would judge the corresponding proof

activity to violate the norm of consistency∗PA.

Carleman’s inequality and its proof are given below exactly as they appear in

Pólya [1949, pp. 684–685]:

Theorem. If the terms of the sequence a1, a2, a3, · · · are nonnegative

13Pólya’s proof has been analyzed from the perspective of mathematical explanation by Sand-

borg [1997], and from the perspective of motivation by Morris [forthcoming].
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real numbers, not all equal to 0, then

∞∑
1

(a1a2a3 · · · an)1/n < e
∞∑
1

an.

Proof. Define the numbers c1, c2, c3, · · · by

c1c2c3 · · · cn = (n+ 1)n

for n = 1, 2, 3, · · · . We use this definition, then the inequality between

the arithmetic and the geometric means, and finally the fact that the

sequence defining e, the general term of which is [(k+1)/k]k, is increasing.

We obtain

∞∑
1

(a1a2 · · · an)1/n =
∞∑
1

(a1c1a2c2 · · · ancn)1/n

n+ 1

≤
∞∑
1

a1c1 + a2c2 + · · ·+ ancn
n(n+ 1)

=
∞∑
k=1

akck
∑
n≥k

1

n(n+ 1)

=
∞∑
k=1

akck

∞∑
n=k

(
1

n
− 1

n+ 1

)
=

∞∑
k=1

ak
(k + 1)k

kk−1
1

k

< e

∞∑
k=1

ak.

According to Pólya, the problem with the above perfectly correct proof lies at the

very beginning: the introduction of the ci sequence. Pólya characterized this as a

‘deus ex machina’ step and imagined a variety of objections to it:

“It appears as a rabbit pulled out of a hat.”

“It pops up from nowhere. It looks so arbitrary. It has no visible motive
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S0 S0 S1 S0 S1 I1

S2

stage 0 stage 1 stage 2

Figure 6.1: Stage by stage progression for the first three stages of the planning
underlying the proof activity corresponding to Pólya’s proof

or purpose.”

“I hate to walk in the dark. I hate to take a step, when I cannot see any

reason why it should bring me nearer to the goal.”

“Perhaps the author knows the purpose of this step, but I do not and,

therefore, I cannot follow him with confidence.”

“This step is not trivial. It seems crucial. If I could see that it has

some chances of success, or see some plausible provisional justification

for it, then I could also imagine how it was invented and, at any rate,

I could follow the subsequent reasoning with more confidence and more

understanding.” [Pólya 1949, p. 685]

To better understand the objections to the ci sequence, we analyze, below, the first

three stages of planning underlying the proof activity corresponding to Pólya’s proof,

a graphical representation of which is provided in figure 6.1. In what follows, the

planning and proof activity is evaluated from the perspective of a mathematical

agent reading Pólya’s proof and reconstructing for herself the underlying planning.

At the start of the proof activity corresponding to Pólya’s proof, the agent’s plan

is composed of a single proving intention, which is the intention to show the theorem

at hand:
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S0 :

a1, a2, a3, · · · are non-

negative real numbers,

a1, a2, a3, · · · are not all

equal to 0

⇒
∞∑
1

(a1a2a3 · · · an)1/n < e

∞∑
1

an.

By reading the first line of the proof, the agent sees that this intention of type

‘to show’ is then transformed into a further intention by including an additional

hypothesis—the definition of the ci sequence. This then yields the following subplan:

1. (S1) Show
∞∑
1

(a1a2a3 · · · an)1/n < e

∞∑
1

an, from

• a1, a2, a3, · · · are nonnegative real numbers,

• a1, a2, a3, · · · are not all equal to 0,

• c1c2c3 · · · cn = (n+ 1)n for n = 1, 2, 3, · · · .

However, from the reader’s perspective, adding this subplan violates consistency∗PA.

This is due to the fact that the reader has no reason to believe that adding the extra

hypothesis—the definition of the ci sequence—at this stage will result in a plan that

can be successfully executed. More specifically, she has no reason to believe that

adding this extra hypothesis will help establish the conclusion of S1.14

We are now at stage 1 in figure 6.1. To get to stage 2, the reader sees from

the proof that intention S1 is itself transformed into further intentions through the

generation of the following subplan:

1. (I1) Infer
∞∑
1

(a1a2 · · · an)1/n =
∞∑
1

(a1c1a2c2 · · · ancn)1/n

n+ 1
, from

• c1c2c3 · · · cn = (n+ 1)n for n = 1, 2, 3, · · · .

14It may be objected that the reader does have a reason to believe that introducing this extra

hypothesis will help establish S1, namely that this move is part of a successful proof. Clearly, this

is not the right kind of reason that would satisfy the reader, for otherwise the reader’s potential

complaints imagined by Pólya would not make sense in the first place.
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2. (S2) Show
∞∑
1

(a1a2a3 · · · an)1/n < e
∞∑
1

an, from

• a1, a2, a3, · · · are nonnegative real numbers,

• a1, a2, a3, · · · are not all equal to 0,

• c1c2c3 · · · cn = (n+ 1)n for n = 1, 2, 3, · · · ,

•
∞∑
1

(a1a2 · · · an)1/n =
∞∑
1

(a1c1a2c2 · · · ancn)1/n

n+ 1
.

But here again we have another violation of consistency∗PA from the reader’s per-

spective. This is due to the fact that, at this stage, the reader has no reason to

believe that the plan that results from integrating this subplan can be successfully

executed. More precisely, the reader has no reason to believe that the equality

∞∑
1

(a1a2 · · · an)1/n =
∞∑
1

(a1c1a2c2 · · · ancn)1/n

n+ 1
,

will help establish the conclusion of S2.

In our framework, then, a typical reader working through Pólya’s proof will find

two consistency∗PA violations in the corresponding proof activity. We suggest that

it is precisely these violations that underlie the objections Pólya noted against this

proof. Recall, for example, that his final objection was that a reader will fail to

grasp that the introduction of the ci sequence “has some chances of success” [Pólya

1949, p. 685]. This objection directly reflects that the reader fails to believe that the

plan which results from integrating the subplans discussed above can be successfully

executed. The same is true for many other of Pólya’s complaints. For example, a

failure to “see any reason why” the approach would help the reader to prove the

theorem, and being unable to follow the proof “with confidence” [Pólya 1949, p. 685]

both support an interpretation in which the reader fails to believe that the plan she

obtains can be successfully executed. In other words, Pólya’s proof of Carleman’s

inequality is a concrete example of a proof which is judged to be defective precisely

because, from the reader’s perspective, its corresponding proof activity violates the
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norm of consistency∗PA.15

7 Conclusion

Mathematical proofs in mathematical practice are produced by rational agents. In

this respect, a mathematical proof is not a “simple juxtaposition” or an “haphazard

collection” of deductive steps, that is, a mathematical proof is not a sequence of

arbitrary deductive steps. Instead, a better characterization would be to say that:

A mathematical proof is a sequence of rational deductive steps.

In this paper, we have proposed an analysis of what it means for a deductive step in

a mathematical proof to qualify as rational. We first observed that a mathematical

proof is always the report of a successful proof activity, and that when we judge

the rationality of a deductive step in a mathematical proof, we in fact judge the

rationality of a deductive inference in a proof activity. We then identified the norms

of rationality governing deductive inferences in proof activities, which we traced

back to norms of planning rationality, and we provided evidence that these norms

are indeed at play in mathematical practice. Taken together, this constitutes our

proposed characterization of what Poincaré and Mac Lane might consider to be

missing from the traditional view of mathematical proof.

Another way to formulate the point expressed by Poincaré and Mac Lane would

be to say that the traditional view provides a too impoverished conception of the

structure of mathematical proofs. Mac Lane put things in exactly this way when

he wrote that: “proofs are not mere collections of atomic processes, but are rather

complex combinations with a highly rational structure” [Mac Lane 1935, p. 130].

Following Mac Lane’s terminology, we can say that a mathematical proof possesses

15There is reason to think that there is a whole class of proofs which, like Pólya’s, are judged

to be defective because, from a reader’s perspective, their corresponding proof activities involve

consistency∗PA violations. Such proofs are often referred to as unmotivated proofs. See Morris

[forthcoming] for a detailed discussion of motivated and unmotivated proofs.
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a rational structure in virtue of being composed of rational deductive steps. By

offering a characterization of what is meant here by rational, we are thus providing

an account of the rational structure of mathematical proofs. In short, what makes

the structure of a proof rational is precisely that it is the direct product or outcome

of a distinctive form of rational planning agency.16

The approach adopted here might be used to analyze the rational structure of

pieces of mathematics other than proofs. In particular, it might help to analyze

the rational structure or organization of whole mathematical developments. This

is an issue that has recently attracted some philosophical attention, most notably

from Sieg [2010] and Avigad [2020]. As in the case of mathematical proofs, one can

conceive of whole mathematical developments as being the product of rational plan-

ning agents, thus opening the way to an analysis of their rational structure in terms

of planning agency. This can be achieved by identifying the relevant mathematical

activities in play, and by characterizing the form(s) of planning agency underlying

them.
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